1 |
Censor Y , Elfving T . A multiprojection algorithm using Bregman projection in a product space[J]. Numerical Algorithm, 1994, 8, 221- 239.
doi: 10.1007/BF02142692
|
2 |
Byrne C . Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems, 2002, 18, 441- 453.
doi: 10.1088/0266-5611/18/2/310
|
3 |
Dang Y , Gao Y . The strong convergence of a KM-CQ-like algorithm for split feasibility problem[J]. Inverse Problems, 2011, 27, 015007.
doi: 10.1088/0266-5611/27/1/015007
|
4 |
Yang Q . The relexed CQ algorithm solving the split feasibility problem[J]. Inverse Problems, 2004, 20, 1261- 1266.
doi: 10.1088/0266-5611/20/4/014
|
5 |
Moudafi A . Alternating CQ algorithm for convex feasibility and split fixed point problem[J]. Journal of Nonlinear Convex Analysis, 2014, 15, 809- 818.
|
6 |
Chang S, Agarwal R. Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings[J]. Journal of Inequalities and Applications, 2014, 2014: Article ID 367.
|
7 |
Dong Q , He S . Self-adaptive projection algorithms for solving the split equality problems[J]. Fixed Point Theory, 2017, 18, 191- 202.
doi: 10.24193/fpt-ro.2017.1.15
|
8 |
Li M , Kao X , Che H . Relaxed inertial accelerated algorithms for solving split equality feasibility problem[J]. Journal of Nonlinear Sciences and Applications, 2017, 10, 4109- 4121.
doi: 10.22436/jnsa.010.08.07
|
9 |
Censor Y , Elfving T . The multiple-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems, 2005, 21, 2071- 2084.
doi: 10.1088/0266-5611/21/6/017
|
10 |
Zhang W, Han D, Li Z. A self-adaptive projection method for solving the multiple-sets split feasibility problem[J]. Inverse Problems, 2009, 25: 115001: 1-115001: 16.
|
11 |
Censer Y , Motova A , Segal A . Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. Journal of Mathematical Analysis and Applications, 2007, 327, 1244- 1256.
doi: 10.1016/j.jmaa.2006.05.010
|
12 |
Qu B , Chang H . Remark on the successive projection algorithm for the multiple-sets split feasibility problem[J]. Numerical Function Analysis and Optimizations, 2017, 38 (12): 1614- 1623.
doi: 10.1080/01630563.2017.1369109
|
13 |
Shi L, Chen R, Wu Y. An iterative algorithm for the split equality and multiple-sets split equality problem[J]. Abstract and Applied Analysis, 2014, 2014: Article ID 620813.
|
14 |
Wu Y, Chen R, Shi L. Split equality problem and multiple sets split equality problem for quasi-nonexpansive multi-valued mapping[J]. Journal of Inequalities and Applications, 2014, 2014: Article ID 428.
|
15 |
Dang Y , Yao J , Gao Y . Relaxed two points projection method for solving the multiple-sets split equality problem[J]. Numerical Algorithm, 2018, 78, 263- 275.
doi: 10.1007/s11075-017-0375-0
|
16 |
Zarantonello E . Projections on convex sets in Hilbert space and spectral theory[J]. Contributions to Nonlinear Functional Analysis, 1971, 237- 424.
|
17 |
程其襄, 张奠宙, 魏国强, 等. 实变函数与泛函分析基础[M]. 北京: 高等教育出版社, 2010.
|
18 |
Rockafeller R . Convex Analysis[M]. Princeton: Princeton University Press, 1977.
|
19 |
Fukushima M . Relaxed projection method for variational inequalities[J]. Mathematical Programming, 1986, 35, 58- 70.
doi: 10.1007/BF01589441
|
20 |
Polyak B . Minimization of unsmooth functionals[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9, 14- 29.
|