运筹学学报 ›› 2021, Vol. 25 ›› Issue (2): 93-103.doi: 10.15960/j.cnki.issn.1007-6093.2021.02.007

•   • 上一篇    下一篇

多集分裂等式问题的逐次松弛投影算法

周雪玲1, 李梅霞2,*(), 车海涛2   

  1. 1. 扬州大学数学科学学院, 江苏扬州 225002
    2. 潍坊学院数学与信息科学学院, 山东潍坊 261061
  • 收稿日期:2019-10-08 出版日期:2021-06-15 发布日期:2021-05-06
  • 通讯作者: 李梅霞 E-mail:limeixia001@163.com
  • 作者简介:李梅霞 E-mail: limeixia001@163.com
  • 基金资助:
    国家自然科学基金(11401438);国家自然科学基金(11571120);山东省自然科学基金(ZR2020MA027);山东省自然科学基金(ZR2019MA022)

Successive relaxed projection algorithm for multiple-sets split equality problem

Xueling ZHOU1, Meixia LI2,*(), Haitao CHE2   

  1. 1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China
    2. School of Mathematics and Information Science, Weifang University, Weifang 261061, Shandong, China
  • Received:2019-10-08 Online:2021-06-15 Published:2021-05-06
  • Contact: Meixia LI E-mail:limeixia001@163.com

摘要:

多集分裂等式问题是分裂可行性问题的拓展问题,在图像重建、语言处理、地震探测等实际问题中具有广泛的应用。为了解决这个问题,提出了逐次松弛投影算法,设计了变化的步长,使其充分利用当前迭代点的信息且不需要算子范数的计算,证明了算法的弱收敛性。数值算例验证了算法在迭代次数与运行时间等方面的优越性。

关键词: 多集分裂等式问题, 逐次松弛投影算法, 收敛性

Abstract:

The multiple-sets split equality problem is an extended split feasibility problem, which has a wide application in image reconstruction, language processing, and seismic exploration. In order to solve this problem, we propose a successive relaxed projection algorithm with a variable stepsize which can fully use the information of the current iteration point and does not need the calculation of the operator norm. Furthermore the weak convergence of the algorithm is proved. The numerical examples show the superiority of the algorithm in the number of iterations and the running time.

Key words: multiple-sets split equality problem, successive relaxed projection algorithm, convergence

中图分类号: