4 |
Donoho D L . Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52, 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
5 |
Beck A . On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes[J]. SIAM Journal on Optimization, 2013, 25, 185- 209.
|
6 |
Ochs P , Brox T , Pock T . IPiasco: Inertial proximal algorithm for strongly convex optimization[J]. Journal of Mathematical Imaging and Vision, 2015, 53, 171- 181.
doi: 10.1007/s10851-015-0565-0
|
7 |
Gao X , Cai X J , Han D R . A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems[J]. Journal of Global Optimization, 2020, 76, 863- 887.
doi: 10.1007/s10898-019-00819-5
|
8 |
Wang Q S , Han D R . A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems[J]. Applied Numerical Mathematics, 2023, 189, 66- 87.
doi: 10.1016/j.apnum.2023.03.014
|
9 |
Gao X , Cai X J , Wang X F , et al. An alternative structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant[J]. Journal of Global Optimization, 2023, 87, 277- 300.
doi: 10.1007/s10898-023-01300-0
|
10 |
Chao M T , Nong F F , Zhao M Y . An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems[J]. Journal of Applied Mathematics and Computing, 2023, 69, 1559- 1581.
doi: 10.1007/s12190-022-01799-8
|
11 |
Zhao J , Dong Q L , Rassias M T , et al. Two-step inertial Bregman proximal alternating minimization for nonconvex and nonsmooth problems[J]. Journal of Global Optimization, 2022, 84, 941- 966.
doi: 10.1007/s10898-022-01176-6
|
12 |
Yang X , Xu L L . Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems[J]. Journal of Global Optimization, 2023, 87, 939- 964.
doi: 10.1007/s10898-022-01214-3
|
13 |
Malitsky Y . Golden ratio algorithms for variational inequalities[J]. Mathematical Programming, 2020, 184, 383- 410.
doi: 10.1007/s10107-019-01416-w
|
14 |
Rockafellar R T , Wets R J B . Variational Analysis[M]. Berlin: Springer, 2009.
|
1 |
Attouch H , Bolte J , Redont P , et al. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality[J]. Mathematics of Operations Research, 2010, 35, 438- 457.
doi: 10.1287/moor.1100.0449
|
2 |
Bolte J , Sabach S , Teboulle M . Proximal alternating linearized minimization for nonconvex and nonsmooth problems[J]. Mathematical Programming, 2014, 146, 459- 494.
doi: 10.1007/s10107-013-0701-9
|
3 |
Attouch H , Bolte J , Svaiter B F . Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Mathematical Programming, 2013, 137, 91- 129.
doi: 10.1007/s10107-011-0484-9
|
15 |
Bolte J , Daniilidis A , Lewis A S , et al. Clark subgradients of stratifiable functions[J]. SIAM Journal on Optimization, 2007, 18, 556- 572.
doi: 10.1137/060670080
|
16 |
Xu Z B , Chang X Y , Xu F M , et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1013- 27.
doi: 10.1109/TNNLS.2012.2197412
|