1 |
Aussel D , Cao Van K , Salas D . Quasi-variational inequality problems over product sets with quasi-monotone operators[J]. SIAM Journal on Optimization, 2019, 29 (2): 1558- 1577.
doi: 10.1137/18M1191270
|
2 |
李艳, 夏福全. Banach空间中广义混合变分不等式解的迭代算法[J]. 四川师范大学学报(自然科学版), 2011, 34 (1): 13- 19.
doi: 10.3969/j.issn.1001-8395.2011.01.003
|
3 |
罗雪萍. 自反巴拿赫空间中混合变分不等式的稳定性与Tikhonov正则化[J]. 西南民族大学学报(自然科学版), 2017, 43 (6): 612- 617.
|
4 |
Fakhar M , Zafarani J . On generalized variational inequalities[J]. Journal of Global Optimization, 2009, 43 (4): 503- 511.
doi: 10.1007/s10898-008-9346-2
|
5 |
翁姗. 混合拟变分不等式及其应用[D]. 桂林: 广西师范大学, 2017.
|
6 |
Robinson S M. Generalized equations and their solutions, part Ⅰ: Basic theory[M]//Huard P (ed.). Point-to-Set Maps and Mathematical Programming, Mathematical Programming Studies, 1979, 10: 128-141.
|
7 |
邵长英, 黄力人. 变分不等式问题与无约束最优化问题[J]. 海南师范学院学报(自然科学版), 2002, 15 (2): 1- 8.
|
8 |
袁媛媛, 张文伟, 屈彪. 求解拟变分不等式问题的一种外梯度算法[J]. 应用数学进展, 2015, 4 (1): 70- 75.
|
9 |
Kanzow C , Steck D . Quasi-variational inequalities in Banach spaces: Theory and augmented Lagrangian methods[J]. SIAM Journal on Optimization, 2019, 29 (4): 3174- 3200.
doi: 10.1137/18M1230475
|
10 |
侯丽娜, 孙海琳. 交通网络下的多厂商两阶段随机非合作博弈问题——基于随机变分不等式[J]. 运筹学学报, 2019, 23 (3): 91- 108.
doi: 10.15960/j.cnki.issn.1007-6093.2019.03.007
|
11 |
Alphonse A , Hintermüller M , Rautenberg C N . Stability of the solution set of quasi-variational inequalities and optimal control[J]. SIAM Journal on Control and Optimization, 2020, 58 (6): 3508- 3532.
doi: 10.1137/19M1250327
|
12 |
Facchinei F , Pang J S , Scutari G , et al. Ⅵ-constrained hemivariational inequalities: Distributed algorithms and power control in ad-hoc networks[J]. Mathematical Programming, 2014, 145, 59- 96.
doi: 10.1007/s10107-013-0640-5
|
13 |
Wang Z B , Xiao Y B , Chen Z Y . Degree theory for generalized mixed quasi-variational inequalities and its applications[J]. Journal of Optimization Theory and Applications, 2020, 187 (1): 43- 64.
doi: 10.1007/s10957-020-01748-0
|
14 |
赵渊嫣. 广义变分不等式解的精炼及应用[D]. 贵阳: 贵州大学, 2016.
|
15 |
李小焕, 何洪津, 韩德仁. 一种改进的自适应投影法解广义纳什均衡问题[J]. 南京师范大学学报(自然科学版), 2011, 34 (2): 10- 14.
|
16 |
Kubota K , Fukushima K . Gap function approach to the generalized Nash equilibrium problem[J]. Journal of Optimization Theory and Applications, 2010, 144 (3): 511- 531.
doi: 10.1007/s10957-009-9614-4
|
17 |
Gupta R , Mehra A . Gap functions and error bounds for quasi variational inequalities[J]. Journal of Global Optimization, 2012, 53 (4): 737- 748.
doi: 10.1007/s10898-011-9733-y
|
18 |
Khan S A , Chen J W . Gap function and global error bounds for generalized mixed quasi variational inequalities[J]. Applied Mathematics and Computation, 2015, 260, 71- 81.
doi: 10.1016/j.amc.2015.03.056
|
19 |
Aussel D , Correa R , Marechal M . Gap functions for quasivariational inequalities and generalized nash equilibrium problems[J]. Journal of Optimization Theory and Applications, 2011, 151 (3): 474- 488.
doi: 10.1007/s10957-011-9898-z
|
20 |
童裕孙. 泛函分析教程[M]. 上海: 复旦大学出版社, 2007.
|
21 |
李曦, 黄南京, 邹云志. 广义f-投影算子的稳定性及其应用[J]. 数学学报, 2011, 54 (5): 811- 822.
|
22 |
唐国吉, 黄南京. 非Lipschitz集值混合变分不等式的一个投影次梯度方法[J]. 应用数学和力学, 2011, 32 (10): 1254- 1264.
doi: 10.3879/j.issn.1000-0887.2011.10.011
|
23 |
方长杰, 郑继明, 吴慧莲. Banach空间中一类广义集值非线性混合似变分不等式解的存在性与算法[J]. 四川师范大学学报(自然科学版), 2007, 30 (1): 40- 44.
|
24 |
吴绍平. 泛函分析及其应用[M]. 浙江: 浙江大学出版社, 1990: 12.
|
25 |
王元明. 非线性偏微分方程: 上册[M]. 南京: 东南大学出版社, 1992: 140.
|
26 |
李志龙, 王秀梅. 一个变分定理的随机化[J]. 苏州科技学院学报, 2003 (2): 17- 20.
|
27 |
韩小琴, 冯世强. Banach空间中广义混合变分不等式的新逼近算法[J]. 乐山师范学院学报, 2015, 30 (8): 1- 4.
|
28 |
张冬杨, 关伟波. Banach空间中广义f-投影算子的连续性及其应用[J]. 哈尔滨师范大学自然科学学报, 2013, 29 (1): 5-7, 11.
|
29 |
Royden H L . Real Analysis[M]. New York: Macmillan Publishing Company, 1988: 159- 161.
|
30 |
Li X , Li X S , Huang N J . A generalized f-projection algorithm for inverse mixed variational inequalities[J]. Optimization Letters, 2014, 8 (3): 1063- 1076.
|
31 |
Taji K . On gap functions for quasi-variational inequalities[J]. Abstract and Applied Analysis, 2008 (1): 1- 7.
|
32 |
Anh L Q , Hung N V , Tam V M . Regularized gap functions and error bounds for generalized mixed strong vector quasiequilibrium problems[J]. Computational and Applied Mathematics, 2018, 34 (5): 5935- 5950.
|
33 |
林清英. 集值拟变分不等式的间隙函数及误差边界[D]. 厦门: 集美大学, 2014.
|
34 |
Kubotak K , Fukushima M . Gap function approach to the generalized Nash equilibrium problem[J]. Journal of Optimization Theory and Applications, 2010, 144 (3): 511- 531.
|
35 |
Solodov M V . Merit functions and error bounds for generalized variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2003, 287 (2): 405- 414.
|
36 |
Hiriart J B, Lemaréchal C. Convex Analysis and Minimization Algorithms Ⅰ Volume 305[M]. Berlin: Springer, 1993: 267.
|