运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (2): 141-157.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.011
收稿日期:
2021-12-19
出版日期:
2025-06-15
发布日期:
2025-06-12
通讯作者:
高岳林
E-mail:gaoyuelin@163.com
基金资助:
Suxia MA1, Yuelin GAO1,*(), Hongwei LIN2, Bo ZHANG3
Received:
2021-12-19
Online:
2025-06-15
Published:
2025-06-12
Contact:
Yuelin GAO
E-mail:gaoyuelin@163.com
摘要:
填充函数法是一种用于寻找无约束优化问题全局最优解的确定性方法, 这种方法的核心技术是构造填充函数, 使得迭代过程不断跳出当前的局部极小点。目前见到的填充函数一般都含有参数, 而参数的选取对算法的计算效果影响较大。本文利用填充函数的定义, 具体构造出一个新的无参数填充函数, 由此提出了新的全局优化无参数填充函数方法, 数值实验表明, 该方法是可行的和有效的, 具有更好的全局寻优能力。
中图分类号:
马素霞, 高岳林, 林洪伟, 张博. 一种新的全局优化无参数填充函数方法[J]. 运筹学学报(中英文), 2025, 29(2): 141-157.
Suxia MA, Yuelin GAO, Hongwei LIN, Bo ZHANG. A new non parameter-filled function method for global optimization[J]. Operations Research Transactions, 2025, 29(2): 141-157.
表1
例10的系数"
1 | 4.0 | 4.0 | 4.0 | 4.0 | 0.1 |
2 | 1.0 | 1.0 | 1.0 | 1.0 | 0.2 |
3 | 8.0 | 8.0 | 8.0 | 8.0 | 0.3 |
4 | 6.0 | 6.0 | 6.0 | 6.0 | 0.4 |
5 | 3.0 | 7.0 | 3.0 | 7.0 | 0.5 |
6 | 2.0 | 9.0 | 2.0 | 9.0 | 0.6 |
7 | 5.0 | 5.0 | 3.0 | 3.0 | 0.3 |
8 | 8.0 | 1.0 | 8.0 | 1.0 | 0.7 |
9 | 6.0 | 2.0 | 6.0 | 2.0 | 0.5 |
10 | 7.0 | 3.6 | 7.0 | 3.6 | 0.5 |
表3
算法PFFF对算例$ 1\sim14 $的数值计算结果"
No. | Iter | |||||
1 | 2 | 1 | 0.01/0.01 | 0.495 4 | 49 | |
2 | 1 | 0.01/0.01 | 0.603 5 | 49 | ||
2 | 2 | 2 | 0.3/0.3 | 0.469 8 | 71 | |
2 | 2 | 0.3/0.3 | 0.442 2 | 59 | ||
2 | 1 | 0.3/0.3 | 0.382 8 | 59 | ||
3 | 2 | 2 | 0.4/0.4 | 0.005 0 | 82 | |
4 | 2 | 1 | 0.2/0.3 | 0.913 0 | 2 905 | |
5 | 2 | 5 | 0.1/0.25 | 6.514 0 | 423 | |
6 | ( | 2 | 2 | 0.8/0.8 | 0.011 2 | 172 |
( | 2 | 1 | 0.8/0.8 | 0.461 3 | 164 | |
( | 2 | 1 | 0.1/0.1 | 0.388 6 | 340 | |
7 | 2 | 2 | 0.4/0.4 | 0.526 4 | 403 | |
3 | 5 | 1.0/1.0 | 0.325 1 | 455 | ||
5 | 2 | 1.0/1.0 | 0.080 1 | 2 226 | ||
7 | 2 | 1.0/1.0 | 0.763 1 | 2 783 | ||
10 | 6 | 0.1/0.1 | 1.372 7 | 16 024 | ||
20 | 8 | 0.1/0.1 | 3.126 5 | 58 693 | ||
30 | 11 | 0.1/0.1 | 7.102 7 | 174 490 | ||
50 | 18 | 1.0/1.0 | 15.673 8 | 439 577 | ||
100 | 22 | 0.1/0.1 | 47.284 4 | 1 402 326 | ||
200 | 61 | 0.4/0.4 | 813.053 6 | 18 136 009 | ||
500 | 72 | 0.4/0.4 | 8.539 3 | 11 524 001 | ||
1 000 | 83 | 0.4/0.4 | 4.168 9 | 46 048 001 | ||
8 | 2 | 5 | 0.1/0.1 | 0.659 0 | 705 | |
9 | 2 | 1 | 0.3/0.3 | 0.488 4 | 247 | |
10 | ( | 4 | 2 | 0.1/0.1 | 0.673 1 | 1 052 |
( | 4 | 2 | 0.1/0.1 | 0.488 2 | 992 | |
( | 4 | 2 | 0.1/0.1 | 0.559 5 | 1 002 | |
11 | 2 | 2 | 1.0/1.0 | 0.433 7 | 395 | |
3 | 4 | 1.0/1.0 | 0.555 7 | 1 041 | ||
4 | 5 | 1.0/1.0 | 0.883 1 | 1 969 | ||
5 | 8 | 1.0/1.0 | 0.848 8 | 3 655 | ||
6 | 8 | 1.0/1.0 | 1.010 0 | 5 436 | ||
20 | 48 | 0.1/1.0 | 3.507 1 | 126 670 | ||
30 | 78 | 0.1/1.0 | 6.344 5 | 213 540 | ||
50 | 81 | 1.0/1.0 | 132.678 7 | 3 800 763 | ||
100 | 135 | 1.0/1.0 | 939.807 5 | 30 483 410 | ||
12 | 8 | 11 | 0.15/0.2 | 2.728 8 | 37 432 | |
13 | 5 | 4 | 0.3/0.3 | 0.691 6 | 3 005 | |
10 | 17 | 0.1/0.1 | 4.315 3 | 45 842 | ||
14 | 2 | 2 | 0.1/0.1 | 0.669 3 | 532 | |
3 | 2 | 0.2/0.2 | 0.737 8 | 957 | ||
4 | 2 | 0.15/0.2 | 1.010 8 | 5 304 | ||
5 | 2 | 0.15/0.2 | 1.224 4 | 7 456 |
表10
例5的计算结果, $ x_0^1=(1, 1) $"
1 | (1.000 0, 1.000 0) | (1.040 8, 1.040 8) | 0.179 8 |
2 | (0.661 2, 1.040 8) | (0.693 8, 1.040 8) | |
3 | (0.693 8, 0.661 2) | (0.693 8, 0.693 8) | |
4 | ( | ( | |
5 | (0.000 0, | (0.000 3 |
表15
例7的计算结果, $ (n=3), \; x_0^1=(-3, -3, -3) $"
1 | ( | ( | 50.075 2 |
2 | ( | ( | 37.603 5 |
3 | ( | ( | 25.038 7 |
4 | ( | ( | 4.146 7 |
5 | (1.052 3, 1.000 0, 1.000 0) | (1.000 0, 1.000 0, 1.000 0) | 9.288 8 |
表16
例7的计算结果, $ (n=5), \; x_0^1=(2, 3, 2, 1, -2) $"
1 | (2.000 0, 3.000 0, 2.000 0, 1.000 0, | (1.989 6, 2.981 1, 1.997 4, 1.000, 1.000) | 75.262 2 |
2 | (0.996 3, | (1.000 0, 1.000 0, 1.000 0, 1.000 0, 1.000 0) | 1.454 9 |
表17
例8的计算结果, $ x_0^1=(1, 1) $"
1 | (1.000 0, 1.000 0) | (8.088 8, 76.718 2) | |
2 | (8.088 8, 9.563 2) | (8.088 8, 9.563 2) | |
3 | (18.664 7, 9.563 2) | (18.654 2, 9.563 2) | |
4 | ( | ( | |
5 | ( | ( |
表18
PFFF与PFF1、PFFF2的数值计算结果对比"
No. | PFFF | PFF1 | PFF2 | |||||||||
iter | iter | | iter | | ||||||||
1 | 2 | 1 | 49 | 0.549 5 | 2 | 961 | 0.676 9 | 22 | 39 588 | 443.951 1 | ||
2 | 2 | 2 | 71 | 0.469 8 | 1 | 260 | 0.607 4 | 24 | 20 947 | 138.604 2 | ||
2 | 2 | 59 | 0.442 2 | 1 | 256 | 0.483 1 | ||||||
2 | 1 | 59 | 0.382 8 | 2 | 256 | 0.590 7 | ||||||
3 | 2 | 2 | 82 | 0.005 0 | 2 | 294 | 0.539 9 | 10 | 10 181 | 0.620 8 | ||
4 | 2 | 3 | 2 905 | 0.913 0 | 15 | 243 234 | 76.445 0 | |||||
5 | 2 | 5 | 423 | 0.325 4 | 4 | 1 353 | 0.725 7 | 3 | 15 422 | 11.863 6 | ||
6 | 2 | 2 | 172 | 0.011 2 | 2 | 609 | 0.725 9 | 10 | 21 442 | 1.396 2 | ||
2 | 1 | 164 | 0.461 3 | 1 | 316 | 0.691 0 | 21 | 35 327 | 99.368 0 | |||
2 | 1 | 340 | 0.388 6 | 1 | 322 | 0.549 5 | 27 | 114 716 | 131.113 6 | |||
7 | 2 | 2 | 403 | 0.526 4 | 1 | 382 | 0.666 9 | 13 | 57 144 | 74.641 7 | ||
3 | 5 | 455 | 0.325 1 | 4 | 2 047 | 0.681 2 | 6 | 140 280 | 100.230 8 | |||
5 | 2 | 2 226 | 0.080 1 | 3 | 1 905 | 0.572 9 | 12 | 725 055 | 26.090 3 | |||
7 | 2 | 2 783 | 0.763 1 | 1 | 3 386 | 0.892 9 | 18 | 989 760 | 271.392 7 | |||
10 | 6 | 16 024 | 1.372 7 | 5 | 21 352 | 1.994 4 | 19 | 2 195 884 | 183.851 7 | |||
8 | 2 | 5 | 705 | 0.659 0 | 5 | 838 | 0.739 4 | 11 | 11 770 | 11.002 0 |
表19
PFFF与PFF3的数值计算结果对比"
No. | PFFF | PFF3 | ||||||
iter | iter | |||||||
2 | 2 | 2 | 71 | 0.469 8 | 5 | 904 | 4.389 1 | |
2 | 2 | 59 | 0.442 2 | 5 | 900 | 4.406 4 | ||
2 | 1 | 59 | 0.382 8 | 5 | 896 | 4.391 6 | ||
4 | 2 | 3 | 2 905 | 0.913 0 | ||||
5 | 2 | 5 | 423 | 0.325 4 | 7 | 6 984 | 2.965 6 | |
6 | 2 | 2 | 172 | 0.011 2 | 5 | 508 | 1.042 2 | |
2 | 1 | 164 | 0.461 3 | 5 | 1 062 | 0.873 1 | ||
2 | 1 | 340 | 0.388 6 | 7 | 1 673 | 1.275 4 | ||
7 | 10 | 6 | 16 024 | 1.372 7 | 6 | 17 759 | 31.062 9 | |
30 | 11 | 174 490 | 7.102 7 | |||||
50 | 18 | 439 577 | 15.673 8 | |||||
100 | 22 | 1 402 326 | 47.284 4 | |||||
500 | 72 | 11 524 001 | 8.539 3 | |||||
8 | 2 | 5 | 705 | 0.659 0 | 11 | 6 816 | 2.975 6 | |
9 | 2 | 1 | 247 | 0.488 4 | 5 | 3 732 | 3.158 1 | |
10 | 4 | 2 | 1 052 | 0.673 1 | 5 | 6 413 | 16.478 9 | |
4 | 2 | 992 | 0.488 2 | 5 | 6 511 | 12.160 9 | ||
4 | 2 | 1 002 | 0.559 5 | 5 | 6 421 | 11.591 8 | ||
11 | 2 | 2 | 395 | 0.433 7 | 2 | 2 139 | 1.807 4 |
表20
PFFF与PFF4、PFFF5的数值计算结果对比"
No. | PFFF | PFF4 | PFF5 | |||||||||
iter | iter | iter | ||||||||||
1 | 2 | 1 | 49 | 0.549 5 | 1 | 259 | 0.522 9 | |||||
2 | 2 | 2 | 71 | 0.469 8 | 2 | 310 | 0.523 2 | 1 | 237 | 0.535 2 | ||
2 | 2 | 59 | 0.442 2 | 2 | 347 | 0.483 1 | ||||||
2 | 1 | 59 | 0.382 8 | 2 | 457 | 0.549 4 | ||||||
3 | 2 | 2 | 82 | 0.005 0 | 2 | 331 | 0.702 3 | 1 | 279 | 0.589 9 | ||
4 | 2 | 3 | 2 905 | 0.913 0 | 3 | 2 963 | 1.015 5 | |||||
5 | 2 | 5 | 423 | 0.325 4 | 4 | 4 069 | 0.978 9 | 3 | 4 374 | 1.285 4 | ||
6 | 2 | 2 | 172 | 0.011 2 | 2 | 335 | 0.675 5 | 1 | 277 | 0.614 6 | ||
2 | 1 | 164 | 0.461 3 | 1 | 285 | 0.019 5 | ||||||
2 | 1 | 340 | 0.388 6 | 1 | 269 | 0.589 0 | 1 | 299 | 0.615 8 | |||
7 | 2 | 2 | 403 | 0.526 4 | ||||||||
3 | 5 | 455 | 0.325 1 | 5 | 1 369 | 0.709 2 | 5 | 1 069 | 0.633 8 | |||
5 | 2 | 2 226 | 0.080 1 | 2 | 2 263 | 0.830 3 | 2 | 2 379 | 0.654 7 | |||
7 | 2 | 2 783 | 0.763 1 | 2 | 4 595 | 0.867 4 | 2 | 3 717 | 0.587 7 | |||
10 | 6 | 16 024 | 1.372 7 | 10 | 20 475 | 1.620 7 | 7 | 17 860 | 1.552 8 | |||
20 | 8 | 65 461 | 3.126 5 | 16 | 106 924 | 4.800 8 | 9 | 92 651 | 4.464 0 | |||
30 | 11 | 174 490 | 7.102 7 | 13 | 189 666 | 7.372 0 | 11 | 198 968 | 7.592 7 | |||
50 | 18 | 439 577 | 15.673 8 | 15 | 389 616 | 14.041 4 | ||||||
100 | 22 | 1 402 326 | 47.284 4 | 26 | 2 003 108 | 66.874 2 | 19 | 239 850 | 82.928 3 | |||
200 | 61 | 18 136 009 | 813.053 6 | |||||||||
500 | 72 | 11 524 001 | 8.539 3 | |||||||||
1 000 | 83 | 46 048 001 | 4.168 9 | |||||||||
8 | 2 | 5 | 705 | 0.659 0 | 3 | 585 | 0.692 9 | |||||
9 | 2 | 1 | 247 | 0.488 4 | 1 | 247 | 0.673 3 | 1 | 235 | 0.594 9 | ||
10 | 4 | 2 | 1 052 | 0.673 1 | 2 | 1 122 | 0.525 8 | 2 | 1192 | 0.728 1 | ||
4 | 2 | 992 | 0.488 2 | 2 | 1 107 | 0.758 1 | 2 | 1 007 | 0.578 0 | |||
4 | 2 | 1 002 | 0.559 5 | 2 | 1 102 | 0.676 4 | 2 | 1 105 | 0.651 5 | |||
11 | 2 | 2 | 395 | 0.433 7 | 6 | 1 115 | 0.722 9 | 5 | 783 | 0.642 5 | ||
3 | 4 | 1 041 | 0.555 7 | 10 | 1 441 | 0.639 5 | ||||||
4 | 5 | 1 969 | 0.883 1 | 10 | 6 212 | 1.196 5 | ||||||
5 | 8 | 3 655 | 0.848 8 | 14 | 6 541 | 1.222 7 | ||||||
50 | 81 | 3 800 763 | 0.669 3 | 106 | 5 391 680 | 201.585 7 | ||||||
100 | 135 | 30 483 410 | 939.807 5 | 232 | 52 408 248 | 1.753 2 | ||||||
12 | 8 | 11 | 37 432 | 2.728 8 | 24 | 54 654 | 4.327 5 | |||||
13 | 5 | 4 | 3 005 | 0.691 6 | 8 | 7 252 | 1.334 6 | |||||
10 | 17 | 45 842 | 4.315 3 | 18 | 57 373 | 6.687 3 | ||||||
14 | 2 | 2 | 532 | 0.669 3 | 3 | 761 | 0.709 2 | |||||
3 | 2 | 957 | 0.737 8 | 6 | 2 530 | 0.850 9 | ||||||
4 | 2 | 5 304 | 1.010 8 | 2 | 4 913 | 1.016 6 | ||||||
5 | 2 | 7 456 | 1.224 4 | 3 | 8 744 | 1.312 1 |
1 | Ge R P . A filled function method for finding a global minimizer of a function of several variables[J]. Mathematical Programming, 1990, 46 (2): 191- 204. |
2 | Ge R P , Qin Y F . A class of filled functions for finding global minimizers of a function of several variables[J]. Applied Mathematic and Computation, 1987, 54 (2): 241- 252. |
3 |
Levy A V , Montalvo A . The tunneling algorithm for the global minimization of functions[J]. The SIAM Journal on Scientific Computing, 1985, 6 (1): 15- 29.
doi: 10.1137/0906002 |
4 | 申培萍. 全局优化方法[M]. 北京: 科学出版社, 2006: 19- 32. |
5 | Sreelaja N K . Ant colony optimization based light weight binary search for efficient signature matching to filter ransomware[J]. Applied Soft Computing, 2021, 111 (10): 107635. |
6 |
Yeh W C , Chuang M C . Using multi-objective genetic algorithm for partner selection in green supply chain problems[J]. Expert Systems with Applications, 2011, 38 (4): 4244- 4253.
doi: 10.1016/j.eswa.2010.09.091 |
7 | 黄友锐. 智能优化算法及其应用[M]. 北京: 国防工业出版社, 2008: 9- 138. |
8 |
Gao C L , Yang Y J , Han B S . A new class of filled functions with one parameter for global optimization[J]. Computers and Mathematics with Applications, 2011, 62 (6): 2393- 2403.
doi: 10.1016/j.camwa.2011.05.006 |
9 | El-Gindy T M , Salim M S , Ahmed A I . A new filled function method applied to unconstrained global optimization[J]. Applied Mathematic and Computation, 2016, 273 (1): 1246- 1256. |
10 |
Yang Y J , Shang Y L . A new filled function method for unconstrained global optimization[J]. Applied Mathematic and Computation, 2006, 173 (1): 501- 512.
doi: 10.1016/j.amc.2005.04.046 |
11 |
Wu Z Y , Bai F S , Lee H W J , et al. A filled function method for constrained global optimization[J]. Journal of Global Optimization, 2007, 39 (4): 495- 507.
doi: 10.1007/s10898-007-9152-2 |
12 |
Liu X . A class of generalized filled functions with improved computability[J]. Journal of Computational and Applied Mathematics, 2001, 137 (1): 61- 69.
doi: 10.1016/S0377-0427(00)00697-X |
13 |
Wang C , Yang Y , Li J . A new filled function method for unconstrained global optimization[J]. Journal of Computational and Applied Mathematics, 2009, 225 (1): 68- 79.
doi: 10.1016/j.cam.2008.07.001 |
14 |
Lin H W , Gao Y L , Wang X L , et al. A filled function which has the same local minimizer of the objective function[J]. Optimization Letters, 2019, 13 (4): 761- 776.
doi: 10.1007/s11590-018-1275-5 |
15 |
Lin H W , Wang Y P , Gao Y L , et al. A filled function method for global optimization with inequality constraints[J]. Computational and Applied Mathematics, 2018, 37 (2): 1524- 1536.
doi: 10.1007/s40314-016-0407-8 |
16 |
吴佩佩, 高岳林. 一个新的非线性整数规划问题的单参数填充函数算法[J]. 运筹学学报, 2017, 21 (3): 111- 118.
doi: 10.15960/j.cnki.issn.1007-6093.2017.03.012 |
17 |
He S X , Chen W L , Wang H . A new filled function algorithm for constrained global optimization problems[J]. Applied Mathematic and Computation, 2011, 217 (12): 5853- 5859.
doi: 10.1016/j.amc.2010.12.070 |
18 |
Liu X . Finding global minima with a computable filled function[J]. Journal of Global Optimization, 2001, 19 (2): 151- 161.
doi: 10.1023/A:1008330632677 |
19 |
赵丹, 高岳林. 非线性整数规划问题的无参数填充函数算法[J]. 运筹学学报, 2020, 24 (4): 63- 73.
doi: 10.15960/j.cnki.issn.1007-6093.2020.04.005 |
20 | 高岳林, 吴佩佩. 非线性整数规划的一个新的无参数填充函数算法[J]. 计算数学学报, 2017, 39 (3): 321- 327. |
21 |
Ahmed A I . A new parameter free filled function for solving unconstrained global optimization problems[J]. International Journal of Computer Mathematics, 2021, 98 (1): 106- 119.
doi: 10.1080/00207160.2020.1731484 |
22 |
Pandiya R , Widodo W , Salmah , et al. Non parameter-filled function for global optimization[J]. Applied Mathematic and Computation, 2021, 391, 125642.
doi: 10.1016/j.amc.2020.125642 |
23 | Liu H Y , Wang Y P , Guan S W , et al. A new filled function method for unconstrained global optimization[J]. Applied Mathematic and Computation, 2017, 94 (12): 2283- 2296. |
24 | Ma S Z , Yang Y J , Liu H Q . A parameter free filled function for unconstrained global optimization[J]. Applied Mathematic and Computation, 2009, 215 (10): 3610- 3619. |
25 |
Lin H W , Wang Y P , Fan L . A filled function method with one parameter for unconstrained global optimization[J]. Applied Mathematic and Computation, 2011, 218 (7): 3776- 3785.
doi: 10.1016/j.amc.2011.09.022 |
26 |
Lin H W , Gao Y L , Wang Y P . A continuously differentiable filled function method for global optimization[J]. Numerical Algorithms, 2014, 66 (3): 511- 523.
doi: 10.1007/s11075-013-9746-3 |
27 |
Gao Y L , Yang Y J , You M . A new filled function method for global optimization[J]. Applied Mathematic and Computation, 2015, 268, 685- 695.
doi: 10.1016/j.amc.2015.06.090 |
[1] | 袁柳洋, 汤梦瑶, 迟晓妮. 一类新的无参数的填充打洞函数法[J]. 运筹学学报(中英文), 2025, 29(2): 214-220. |
[2] | 白富生, 兰秘. 带隐藏约束昂贵黑箱问题的自适应代理优化方法[J]. 运筹学学报(中英文), 2024, 28(1): 89-100. |
[3] | 黄小利, 高岳林, 张博, 刘霞. 一种求解二次约束二次规划问题的自适应全局优化算法[J]. 运筹学学报, 2022, 26(2): 83-100. |
[4] | 白富生, 冯丹, 张柯. 求解昂贵黑箱全局优化问题的自适应采样组合响应面方法[J]. 运筹学学报, 2021, 25(2): 1-14. |
[5] | 屈德强, 尚有林, 詹悦, 吴丹. 全局优化问题的一个新的无参数填充函数[J]. 运筹学学报, 2021, 25(1): 89-95. |
[6] | 陈佳利, 张莹, 王胜刚, 谢笑盈. 一个新的填充函数及其在数据拟合问题中的应用[J]. 运筹学学报, 2021, 25(1): 81-88. |
[7] | 赵丹, 高岳林. 非线性整数规划问题的无参数填充函数算法[J]. 运筹学学报, 2020, 24(4): 63-73. |
[8] | 陈永, 王薇, 徐以汎. 具有间断扩散性质的线性约束全局优化随机算法[J]. 运筹学学报, 2020, 24(1): 88-100. |
[9] | 王伟祥, 尚有林, 王朵. 求解带箱子集约束的非光滑全局优化问题的填充函数方法[J]. 运筹学学报, 2019, 23(1): 28-34. |
[10] | Tsegay Giday Woldu, 张海斌, 张鑫, 张芳. 一种求解非线性无约束优化问题的充分下降的共轭梯度法[J]. 运筹学学报, 2018, 22(3): 59-68. |
[11] | 吴佩佩, 高岳林. 一个新的非线性整数规划问题的单参数填充函数算法[J]. 运筹学学报, 2017, 21(3): 111-118. |
[12] | 郑跃, 庄道元, 万仲平. 求解弱线性双层规划问题的一种全局优化方法[J]. 运筹学学报, 2017, 21(3): 86-94. |
[13] | 石礼堂, 陈伟. 非线性无约束优化问题的滤子填充函数算法[J]. 运筹学学报, 2017, 21(1): 55-64. |
[14] | 胡铨, 王薇. 求解带箱式约束全局优化问题的滤子填充函数方法[J]. 运筹学学报, 2016, 20(3): 57-67. |
[15] | 戴彧虹,刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报, 2014, 18(1): 69-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||