运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (3): 63-80.doi: 10.15960/j.cnki.issn.1007-6093.2024.03.004
收稿日期:2024-03-29
									
				
									
				
									
				
											出版日期:2024-09-15
									
				
											发布日期:2024-09-07
									
			通讯作者:
					徐根玖
											E-mail:xugenjiu@nwpu.edu.cn
												基金资助:Received:2024-03-29
									
				
									
				
									
				
											Online:2024-09-15
									
				
											Published:2024-09-07
									
			Contact:
					Genjiu XU   
											E-mail:xugenjiu@nwpu.edu.cn
												摘要:
随着全球经济融合和国际关系日益紧密, 合作共赢已然成为当今时代的核心趋势。合作博弈理论作为研究合作问题的有力工具, 主要探讨如何在参与者之间分配合作所产生的收益。Shapley值作为合作博弈中最重要的单值解之一, 具有重要研究意义与价值。本文将主要介绍目前Shapley值公理化的研究工作, 从可加性、均衡贡献性、边际性、公平性、简约一致性、相关一致性和一些特殊的参与者性的角度, 分别归纳整理了Shapley值基于这些性质的公理化研究结论。最后对未来研究进行了展望。
中图分类号:
李文忠, 徐根玖. 效用可转移合作博弈的Shapley值公理化研究进展综述[J]. 运筹学学报(中英文), 2024, 28(3): 63-80.
Wenzhong LI, Genjiu XU. Axiomatizations of the Shapley value in cooperative games with transferable utility: A review[J]. Operations Research Transactions, 2024, 28(3): 63-80.
| 1 | Edgeworth F Y . Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences[M]. London: Kegan Paul, 1881. | 
| 2 | Von Neumann J , Morgenstern O . Theory of Games and Economic Behavior[M]. Princeton: Princeton University Press, 1944. | 
| 3 | Gillies D B. Some theorems on $n$-person games [D]. Princeton: Princeton University Press, 1953. | 
| 4 | Schmeidler D .  The nucleolus of a characteristic function game[J]. SIAM Journal on Applied Mathematics, 1969, 17 (6): 1163- 1170. doi: 10.1137/0117107 | 
| 5 | Shapley L S. A value for $n$-person games [M]//Contributions to the Theory of Games II, Princeton: Princeton University Press, 1953: 307-317. | 
| 6 | Nowak A S ,  Radzik T .  A solidarity value for $n$-person transferable utility games[J]. International Journal of Game Theory, 1994, 23 (1): 43- 48. doi: 10.1007/BF01242845 | 
| 7 | van den Brink R .  Null or nullifying players: The difference between the Shapley value and equal division solutions[J]. Journal of Economic Theory, 2007, 136 (1): 767- 775. doi: 10.1016/j.jet.2006.09.008 | 
| 8 | Driessen T S H ,  Funaki Y .  Coincidence of and collinearity between game theoretic solutions[J]. Operations Research Spektrum, 1991, 13 (1): 15- 30. doi: 10.1007/BF01719767 | 
| 9 | Moulin H .  The separability axiom and equal sharing method[J]. Journal of Economic Theory, 1985, 36 (1): 120- 148. doi: 10.1016/0022-0531(85)90082-1 | 
| 10 | Myerson R B .  Conference structures and fair allocation rules[J]. International Journal of Game Theory, 1980, 9, 169- 182. doi: 10.1007/BF01781371 | 
| 11 | Pérez-Castrillo D ,  Wettstein D .  Bidding for the surplus: A non-cooperative approach to the Shapley value[J]. Journal of Economic Theory, 2001, 100 (2): 274- 294. doi: 10.1006/jeth.2000.2704 | 
| 12 | Sun C .  Bidding against a buyout: Implementing the Shapley value and the equal surplus value[J]. Journal of Mathematical Economics, 2022, 101, 102686. doi: 10.1016/j.jmateco.2022.102686 | 
| 13 | O'Neill B .  A problem of rights arbitration from the Talmud[J]. Mathematical Social Sciences, 1982, 2 (4): 345- 371. doi: 10.1016/0165-4896(82)90029-4 | 
| 14 | Maniquet F .  A characterization of the Shapley value in queueing problems[J]. Journal of Economic Theory, 2003, 109 (1): 90- 103. doi: 10.1016/S0022-0531(02)00036-4 | 
| 15 | Kar A ,  Mitra M ,  Mutuswami S .  On the coincidence of the prenucleolus and the Shapley value[J]. Mathematical Social Sciences, 2009, 57 (1): 16- 25. doi: 10.1016/j.mathsocsci.2008.08.004 | 
| 16 | Littlechild S C ,  Owen G .  A simple expression for the Shapley value in a special case[J]. Management Science, 1973, 20 (3): 370- 372. doi: 10.1287/mnsc.20.3.370 | 
| 17 | Hou D ,  Sun H ,  Sun P , et al.  A note on the Shapley value for airport cost pooling game[J]. Games and Economic Behavior, 2018, 108, 162- 169. doi: 10.1016/j.geb.2017.04.007 | 
| 18 | Ni D ,  Wang Y .  Sharing a polluted river[J]. Games and Economic Behavior, 2007, 60 (1): 176- 186. doi: 10.1016/j.geb.2006.10.001 | 
| 19 | Li W ,  Xu G ,  van den Brink R .  Two new classes of methods to share the cost of cleaning up a polluted river[J]. Social Choice and Welfare, 2023, 61 (1): 35- 59. doi: 10.1007/s00355-022-01439-x | 
| 20 | 宫豆豆, 徐根玖, 侯东爽. 双边配给问题的Shapley解及其在博物馆通票问题中的应用[J]. 运筹学学报, 2022, 26 (2): 45- 54. | 
| 21 | Xu G ,  Wang W ,  Dong H .  Axiomatization for the center-of-gravity of imputation set value[J]. Linear Algebra and Its Applications, 2013, 439 (8): 2205- 2215. doi: 10.1016/j.laa.2013.06.026 | 
| 22 | Shubik M .  Incentives, decentralized control, the assignment of joint costs and internal pricing[J]. Management Science, 1962, 8 (3): 325- 343. doi: 10.1287/mnsc.8.3.325 | 
| 23 | Einy E ,  Haimanko O .  Characterization of the Shapley-Shubik power index without the efficiency axiom[J]. Games and Economic Behavior, 2011, 73 (2): 615- 621. doi: 10.1016/j.geb.2011.03.007 | 
| 24 | Casajus A .  Relaxations of symmetry and the weighted Shapley values[J]. Economics Letters, 2019, 176, 75- 78. doi: 10.1016/j.econlet.2018.12.031 | 
| 25 | Chen C T ,  Juang W T ,  Sun C J .  Cross invariance, the Shapley value, and the Shapley-Shubik power index[J]. Social Choice and Welfare, 2024, 62, 397- 418. doi: 10.1007/s00355-023-01490-2 | 
| 26 | Kamijo Y ,  Kongo T .  Axiomatization of the Shapley value using the balanced cycle contributions property[J]. International Journal of Game Theory, 2010, 39, 563- 571. doi: 10.1007/s00182-009-0187-0 | 
| 27 | van den Brink R ,  van der Laan G .  Axiomatizations of the normalized Banzhaf value and the Shapley value[J]. Social Choice and Welfare, 1998, 15, 567- 582. doi: 10.1007/s003550050125 | 
| 28 | Derks J J M ,  Haller H H .  Null players out? Linear values for games with variable supports[J]. International Game Theory Review, 1999, 1, 301- 314. doi: 10.1142/S0219198999000220 | 
| 29 | Kongo T .  Balanced contributions based on indirect claims and the Shapley value[J]. Economics Letters, 2018, 167, 48- 50. doi: 10.1016/j.econlet.2018.03.008 | 
| 30 | van den Brink R ,  Funaki Y .  Axiomatizations of a class of equal surplus sharing solutions for TU-games[J]. Theory and Decision, 2009, 67, 303- 340. doi: 10.1007/s11238-007-9083-x | 
| 31 | Yokote K ,  Kongo T ,  Funaki Y .  Relationally equal treatment of equals and affine combinations of values for TU games[J]. Social Choice and Welfare, 2019, 53, 197- 212. doi: 10.1007/s00355-019-01180-y | 
| 32 | Young H P .  Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14, 65- 72. doi: 10.1007/BF01769885 | 
| 33 | Chun Y .  A new axiomatization of the Shapley value[J]. Games and Economic Behavior, 1989, 1 (2): 119- 130. doi: 10.1016/0899-8256(89)90014-6 | 
| 34 | Casajus A, Huettner F. Marginality is equivalent to coalitional strategic equivalence [EB/OL]. (2008-02-26)[2024-03-20]. https://home.uni-leipzig.de/casajus/texts/m=cse.pdf. | 
| 35 | Casajus A .  Sign symmetry vs symmetry: Young's characterization of the Shapley value revisited[J]. Economics Letters, 2018, 169, 59- 62. doi: 10.1016/j.econlet.2018.05.017 | 
| 36 | Casajus A .  Second-order productivity, second-order payoffs, and the Shapley value[J]. Discrete Applied Mathematics, 2021, 304, 212- 219. doi: 10.1016/j.dam.2021.07.036 | 
| 37 | van den Brink R .  An axiomatization of the Shapley value using a fairness property[J]. International Journal of Game Theory, 2002, 30, 309- 319. doi: 10.1007/s001820100079 | 
| 38 | Casajus A .  Differential marginality, van den Brink fairness, and the Shapley value[J]. Theory and Decision, 2011, 71, 163- 174. doi: 10.1007/s11238-009-9171-1 | 
| 39 | Casajus A ,  Yokote K .  Weak differential marginality and the Shapley value[J]. Journal of Economic Theory, 2017, 167, 274- 284. doi: 10.1016/j.jet.2016.11.007 | 
| 40 | Casajus A .  The Shapley value without efficiency and additivity[J]. Mathematical Social Sciences, 2014, 68, 1- 4. doi: 10.1016/j.mathsocsci.2013.12.001 | 
| 41 | Shan E ,  Cui Z ,  Lyu W .  Gain-loss and new axiomatizations of the Shapley value[J]. Economics Letters, 2023, 228, 111168. doi: 10.1016/j.econlet.2023.111168 | 
| 42 | Shan E ,  Cui Z ,  Yu B .  New characterizations of the Shapley value using weak differential marginalities[J]. Economics Letters, 2024, 238, 111685. doi: 10.1016/j.econlet.2024.111685 | 
| 43 | Besner M .  Disjointly productive players and the Shapley value[J]. Games and Economic Behavior, 2022, 133, 109- 114. doi: 10.1016/j.geb.2022.03.002 | 
| 44 | Hart S , Mas-Colell A . Potential, value, and consistency[J]. Econometrica: Journal of the Econometric Society, 1989, 589- 614. | 
| 45 | Calleja P ,  Llerena F .  Path monotonicity, consistency and axiomatizations of some weighted solutions[J]. International Journal of Game Theory, 2019, 48, 287- 310. doi: 10.1007/s00182-019-00661-9 | 
| 46 | Calleja P ,  Llerena F .  Consistency, weak fairness, and the Shapley value[J]. Mathematical Social Sciences, 2020, 105, 28- 33. doi: 10.1016/j.mathsocsci.2020.04.001 | 
| 47 | Oishi T ,  Nakayama M ,  Hokari T , et al.  Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations[J]. Journal of Mathematical Economics, 2016, 63, 44- 53. doi: 10.1016/j.jmateco.2015.12.005 | 
| 48 | Hamiache G .  Associated consistency and Shapley value[J]. International Journal of Game Theory, 2001, 30 (2): 279- 289. doi: 10.1007/s001820100080 | 
| 49 | Xu G ,  Driessen T S H ,  Sun H .  Matrix analysis for associated consistency in cooperative game theory[J]. Linear Algebra and Its Applications, 2008, 428 (7): 1571- 1586. doi: 10.1016/j.laa.2007.10.002 | 
| 50 | Hamiache G .  A matrix approach to the associated consistency with an application to the Shapley value[J]. International Game Theory Review, 2010, 12 (2): 175- 187. doi: 10.1142/S0219198910002581 | 
| 51 | Xu G ,  Driessen T ,  Sun H .  Matrix approach to dual similar associated consistency for the Shapley value[J]. Linear Algebra and Its Applications, 2009, 430 (11-12): 2896- 2897. doi: 10.1016/j.laa.2009.01.009 | 
| 52 | Manuel C ,  González-Arangüena E ,  van den Brink R .  Players indifferent to cooperate and characterizations of the Shapley value[J]. Mathematical Methods of Operations Research, 2013, 77, 1- 14. doi: 10.1007/s00186-012-0412-7 | 
| 53 | Besner M .  Impacts of boycotts concerning the Shapley value and extensions[J]. Economics Letters, 2022, 217, 110685. doi: 10.1016/j.econlet.2022.110685 | 
| 54 | Casajus A .  Symmetry, mutual dependence, and the weighted Shapley values[J]. Journal of Economic Theory, 2018, 178, 105- 123. doi: 10.1016/j.jet.2018.09.001 | 
| 55 | Casajus A .  Weakly balanced contributions and the weighted Shapley values[J]. Journal of Mathematical Economics, 2021, 94, 102459. doi: 10.1016/j.jmateco.2020.102459 | 
| 56 | Béal S ,  Ferrières S ,  Rémila E , et al.  The proportional Shapley value and applications[J]. Games and Economic Behavior, 2018, 108, 93- 112. doi: 10.1016/j.geb.2017.08.010 | 
| 57 | Besner M .  Axiomatizations of the proportional Shapley value[J]. Theory and Decision, 2019, 86 (2): 161- 183. doi: 10.1007/s11238-019-09687-7 | 
| 58 | Casajus A ,  Huettner F .  Null players, solidarity, and the egalitarian Shapley values[J]. Journal of Mathematical Economics, 2013, 49 (1): 58- 61. doi: 10.1016/j.jmateco.2012.09.008 | 
| 59 | Choudhury D ,  Borkotokey S ,  Kumar R , et al.  The Egalitarian Shapley value: A generalization based on coalition sizes[J]. Annals of Operations Research, 2021, 301, 55- 63. doi: 10.1007/s10479-020-03675-9 | 
| 60 | Kuipers J ,  Mosquera M A ,  Zarzuelo J M .  Sharing costs in highways: A game theoretic approach[J]. European Journal of Operational Research, 2013, 228 (1): 158- 168. doi: 10.1016/j.ejor.2013.01.018 | 
| 61 | Shapley L S ,  Shubik M .  A method for evaluating the distribution of power in a committee system[J]. American Political Science Review, 1954, 48 (3): 787- 792. doi: 10.2307/1951053 | 
| [1] | 孙攀飞, 孙浩. 合作博弈两类组合解的社会可接受性[J]. 运筹学学报(中英文), 2024, 28(3): 121-131. | 
| [2] | 袁先智. 共识博弈与区块链生态共识均衡[J]. 运筹学学报(中英文), 2024, 28(3): 1-26. | 
| [3] | 陈泽融, 肖汉. 最短路博弈群体单调分配方案构造[J]. 运筹学学报, 2022, 26(2): 101-110. | 
| [4] | 宫豆豆, 徐根玖, 侯东爽. 双边配给问题的Shapley解及其在博物馆通票问题中的应用[J]. 运筹学学报, 2022, 26(2): 45-54. | 
| [5] | 张广, 肖文君, 邬冬华. 图博弈的过程比例解[J]. 运筹学学报, 2021, 25(4): 101-110. | 
| [6] | 宣洪伟, 李振东, 盛舟山, 刘林冬. 灾后运输网络中的最短路修复合作博弈[J]. 运筹学学报, 2021, 25(3): 183-199. | 
| [7] | 于晓辉, 杜志平, 张强, 逄金辉. 基于T-联盟Shapley值的分配策略[J]. 运筹学学报, 2020, 24(4): 113-127. | 
| [8] | 于晓辉, 杜志平, 张强, 周珍, 逄金辉. 一种资源投入不确定情形下的合作博弈形式及收益分配策略[J]. 运筹学学报, 2019, 23(4): 71-85. | 
| [9] | 薛娟, 高红伟, 姜辉, 周允旭. 基于时隙ALOHA协议的数据传输二人随机博弈模型[J]. 运筹学学报, 2019, 23(4): 45-58. | 
| [10] | 肖燕, 李登峰. 带策略约束的区间数双矩阵博弈的双线性规划求解方法[J]. 运筹学学报, 2019, 23(4): 59-70. | 
| [11] | 侯丽娜, 孙海琳. 交通网络下的多厂商两阶段随机非合作博弈问题——基于随机变分不等式[J]. 运筹学学报, 2019, 23(3): 91-108. | 
| [12] | 王斯琪, 谢政, 戴丽. 一种求解合作博弈最公平核心的非精确平行分裂算法[J]. 运筹学学报, 2016, 20(2): 105-112. | 
| [13] | 胡勋锋, 李登峰. Shapley值与Winter值的解析关系[J]. 运筹学学报, 2015, 19(4): 114-120. | 
| [14] | 邓喜才,向淑文,左羽. 不确定性下强Berge均衡的存在性[J]. 运筹学学报, 2013, 17(3): 101-107. | 
| [15] | 彼得罗相. 微分对策中的联盟解[J]. 运筹学学报, 2012, 16(4): 86-94. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
