运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (3): 63-80.doi: 10.15960/j.cnki.issn.1007-6093.2024.03.004
收稿日期:
2024-03-29
出版日期:
2024-09-15
发布日期:
2024-09-07
通讯作者:
徐根玖
E-mail:xugenjiu@nwpu.edu.cn
基金资助:
Received:
2024-03-29
Online:
2024-09-15
Published:
2024-09-07
Contact:
Genjiu XU
E-mail:xugenjiu@nwpu.edu.cn
摘要:
随着全球经济融合和国际关系日益紧密, 合作共赢已然成为当今时代的核心趋势。合作博弈理论作为研究合作问题的有力工具, 主要探讨如何在参与者之间分配合作所产生的收益。Shapley值作为合作博弈中最重要的单值解之一, 具有重要研究意义与价值。本文将主要介绍目前Shapley值公理化的研究工作, 从可加性、均衡贡献性、边际性、公平性、简约一致性、相关一致性和一些特殊的参与者性的角度, 分别归纳整理了Shapley值基于这些性质的公理化研究结论。最后对未来研究进行了展望。
中图分类号:
李文忠, 徐根玖. 效用可转移合作博弈的Shapley值公理化研究进展综述[J]. 运筹学学报(中英文), 2024, 28(3): 63-80.
Wenzhong LI, Genjiu XU. Axiomatizations of the Shapley value in cooperative games with transferable utility: A review[J]. Operations Research Transactions, 2024, 28(3): 63-80.
1 | Edgeworth F Y . Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences[M]. London: Kegan Paul, 1881. |
2 | Von Neumann J , Morgenstern O . Theory of Games and Economic Behavior[M]. Princeton: Princeton University Press, 1944. |
3 | Gillies D B. Some theorems on n-person games [D]. Princeton: Princeton University Press, 1953. |
4 |
Schmeidler D . The nucleolus of a characteristic function game[J]. SIAM Journal on Applied Mathematics, 1969, 17 (6): 1163- 1170.
doi: 10.1137/0117107 |
5 | Shapley L S. A value for n-person games [M]//Contributions to the Theory of Games II, Princeton: Princeton University Press, 1953: 307-317. |
6 |
Nowak A S , Radzik T . A solidarity value for n-person transferable utility games[J]. International Journal of Game Theory, 1994, 23 (1): 43- 48.
doi: 10.1007/BF01242845 |
7 |
van den Brink R . Null or nullifying players: The difference between the Shapley value and equal division solutions[J]. Journal of Economic Theory, 2007, 136 (1): 767- 775.
doi: 10.1016/j.jet.2006.09.008 |
8 |
Driessen T S H , Funaki Y . Coincidence of and collinearity between game theoretic solutions[J]. Operations Research Spektrum, 1991, 13 (1): 15- 30.
doi: 10.1007/BF01719767 |
9 |
Moulin H . The separability axiom and equal sharing method[J]. Journal of Economic Theory, 1985, 36 (1): 120- 148.
doi: 10.1016/0022-0531(85)90082-1 |
10 |
Myerson R B . Conference structures and fair allocation rules[J]. International Journal of Game Theory, 1980, 9, 169- 182.
doi: 10.1007/BF01781371 |
11 |
Pérez-Castrillo D , Wettstein D . Bidding for the surplus: A non-cooperative approach to the Shapley value[J]. Journal of Economic Theory, 2001, 100 (2): 274- 294.
doi: 10.1006/jeth.2000.2704 |
12 |
Sun C . Bidding against a buyout: Implementing the Shapley value and the equal surplus value[J]. Journal of Mathematical Economics, 2022, 101, 102686.
doi: 10.1016/j.jmateco.2022.102686 |
13 |
O'Neill B . A problem of rights arbitration from the Talmud[J]. Mathematical Social Sciences, 1982, 2 (4): 345- 371.
doi: 10.1016/0165-4896(82)90029-4 |
14 |
Maniquet F . A characterization of the Shapley value in queueing problems[J]. Journal of Economic Theory, 2003, 109 (1): 90- 103.
doi: 10.1016/S0022-0531(02)00036-4 |
15 |
Kar A , Mitra M , Mutuswami S . On the coincidence of the prenucleolus and the Shapley value[J]. Mathematical Social Sciences, 2009, 57 (1): 16- 25.
doi: 10.1016/j.mathsocsci.2008.08.004 |
16 |
Littlechild S C , Owen G . A simple expression for the Shapley value in a special case[J]. Management Science, 1973, 20 (3): 370- 372.
doi: 10.1287/mnsc.20.3.370 |
17 |
Hou D , Sun H , Sun P , et al. A note on the Shapley value for airport cost pooling game[J]. Games and Economic Behavior, 2018, 108, 162- 169.
doi: 10.1016/j.geb.2017.04.007 |
18 |
Ni D , Wang Y . Sharing a polluted river[J]. Games and Economic Behavior, 2007, 60 (1): 176- 186.
doi: 10.1016/j.geb.2006.10.001 |
19 |
Li W , Xu G , van den Brink R . Two new classes of methods to share the cost of cleaning up a polluted river[J]. Social Choice and Welfare, 2023, 61 (1): 35- 59.
doi: 10.1007/s00355-022-01439-x |
20 | 宫豆豆, 徐根玖, 侯东爽. 双边配给问题的Shapley解及其在博物馆通票问题中的应用[J]. 运筹学学报, 2022, 26 (2): 45- 54. |
21 |
Xu G , Wang W , Dong H . Axiomatization for the center-of-gravity of imputation set value[J]. Linear Algebra and Its Applications, 2013, 439 (8): 2205- 2215.
doi: 10.1016/j.laa.2013.06.026 |
22 |
Shubik M . Incentives, decentralized control, the assignment of joint costs and internal pricing[J]. Management Science, 1962, 8 (3): 325- 343.
doi: 10.1287/mnsc.8.3.325 |
23 |
Einy E , Haimanko O . Characterization of the Shapley-Shubik power index without the efficiency axiom[J]. Games and Economic Behavior, 2011, 73 (2): 615- 621.
doi: 10.1016/j.geb.2011.03.007 |
24 |
Casajus A . Relaxations of symmetry and the weighted Shapley values[J]. Economics Letters, 2019, 176, 75- 78.
doi: 10.1016/j.econlet.2018.12.031 |
25 |
Chen C T , Juang W T , Sun C J . Cross invariance, the Shapley value, and the Shapley-Shubik power index[J]. Social Choice and Welfare, 2024, 62, 397- 418.
doi: 10.1007/s00355-023-01490-2 |
26 |
Kamijo Y , Kongo T . Axiomatization of the Shapley value using the balanced cycle contributions property[J]. International Journal of Game Theory, 2010, 39, 563- 571.
doi: 10.1007/s00182-009-0187-0 |
27 |
van den Brink R , van der Laan G . Axiomatizations of the normalized Banzhaf value and the Shapley value[J]. Social Choice and Welfare, 1998, 15, 567- 582.
doi: 10.1007/s003550050125 |
28 |
Derks J J M , Haller H H . Null players out? Linear values for games with variable supports[J]. International Game Theory Review, 1999, 1, 301- 314.
doi: 10.1142/S0219198999000220 |
29 |
Kongo T . Balanced contributions based on indirect claims and the Shapley value[J]. Economics Letters, 2018, 167, 48- 50.
doi: 10.1016/j.econlet.2018.03.008 |
30 |
van den Brink R , Funaki Y . Axiomatizations of a class of equal surplus sharing solutions for TU-games[J]. Theory and Decision, 2009, 67, 303- 340.
doi: 10.1007/s11238-007-9083-x |
31 |
Yokote K , Kongo T , Funaki Y . Relationally equal treatment of equals and affine combinations of values for TU games[J]. Social Choice and Welfare, 2019, 53, 197- 212.
doi: 10.1007/s00355-019-01180-y |
32 |
Young H P . Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14, 65- 72.
doi: 10.1007/BF01769885 |
33 |
Chun Y . A new axiomatization of the Shapley value[J]. Games and Economic Behavior, 1989, 1 (2): 119- 130.
doi: 10.1016/0899-8256(89)90014-6 |
34 | Casajus A, Huettner F. Marginality is equivalent to coalitional strategic equivalence [EB/OL]. (2008-02-26)[2024-03-20]. https://home.uni-leipzig.de/casajus/texts/m=cse.pdf. |
35 |
Casajus A . Sign symmetry vs symmetry: Young's characterization of the Shapley value revisited[J]. Economics Letters, 2018, 169, 59- 62.
doi: 10.1016/j.econlet.2018.05.017 |
36 |
Casajus A . Second-order productivity, second-order payoffs, and the Shapley value[J]. Discrete Applied Mathematics, 2021, 304, 212- 219.
doi: 10.1016/j.dam.2021.07.036 |
37 |
van den Brink R . An axiomatization of the Shapley value using a fairness property[J]. International Journal of Game Theory, 2002, 30, 309- 319.
doi: 10.1007/s001820100079 |
38 |
Casajus A . Differential marginality, van den Brink fairness, and the Shapley value[J]. Theory and Decision, 2011, 71, 163- 174.
doi: 10.1007/s11238-009-9171-1 |
39 |
Casajus A , Yokote K . Weak differential marginality and the Shapley value[J]. Journal of Economic Theory, 2017, 167, 274- 284.
doi: 10.1016/j.jet.2016.11.007 |
40 |
Casajus A . The Shapley value without efficiency and additivity[J]. Mathematical Social Sciences, 2014, 68, 1- 4.
doi: 10.1016/j.mathsocsci.2013.12.001 |
41 |
Shan E , Cui Z , Lyu W . Gain-loss and new axiomatizations of the Shapley value[J]. Economics Letters, 2023, 228, 111168.
doi: 10.1016/j.econlet.2023.111168 |
42 |
Shan E , Cui Z , Yu B . New characterizations of the Shapley value using weak differential marginalities[J]. Economics Letters, 2024, 238, 111685.
doi: 10.1016/j.econlet.2024.111685 |
43 |
Besner M . Disjointly productive players and the Shapley value[J]. Games and Economic Behavior, 2022, 133, 109- 114.
doi: 10.1016/j.geb.2022.03.002 |
44 | Hart S , Mas-Colell A . Potential, value, and consistency[J]. Econometrica: Journal of the Econometric Society, 1989, 589- 614. |
45 |
Calleja P , Llerena F . Path monotonicity, consistency and axiomatizations of some weighted solutions[J]. International Journal of Game Theory, 2019, 48, 287- 310.
doi: 10.1007/s00182-019-00661-9 |
46 |
Calleja P , Llerena F . Consistency, weak fairness, and the Shapley value[J]. Mathematical Social Sciences, 2020, 105, 28- 33.
doi: 10.1016/j.mathsocsci.2020.04.001 |
47 |
Oishi T , Nakayama M , Hokari T , et al. Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations[J]. Journal of Mathematical Economics, 2016, 63, 44- 53.
doi: 10.1016/j.jmateco.2015.12.005 |
48 |
Hamiache G . Associated consistency and Shapley value[J]. International Journal of Game Theory, 2001, 30 (2): 279- 289.
doi: 10.1007/s001820100080 |
49 |
Xu G , Driessen T S H , Sun H . Matrix analysis for associated consistency in cooperative game theory[J]. Linear Algebra and Its Applications, 2008, 428 (7): 1571- 1586.
doi: 10.1016/j.laa.2007.10.002 |
50 |
Hamiache G . A matrix approach to the associated consistency with an application to the Shapley value[J]. International Game Theory Review, 2010, 12 (2): 175- 187.
doi: 10.1142/S0219198910002581 |
51 |
Xu G , Driessen T , Sun H . Matrix approach to dual similar associated consistency for the Shapley value[J]. Linear Algebra and Its Applications, 2009, 430 (11-12): 2896- 2897.
doi: 10.1016/j.laa.2009.01.009 |
52 |
Manuel C , González-Arangüena E , van den Brink R . Players indifferent to cooperate and characterizations of the Shapley value[J]. Mathematical Methods of Operations Research, 2013, 77, 1- 14.
doi: 10.1007/s00186-012-0412-7 |
53 |
Besner M . Impacts of boycotts concerning the Shapley value and extensions[J]. Economics Letters, 2022, 217, 110685.
doi: 10.1016/j.econlet.2022.110685 |
54 |
Casajus A . Symmetry, mutual dependence, and the weighted Shapley values[J]. Journal of Economic Theory, 2018, 178, 105- 123.
doi: 10.1016/j.jet.2018.09.001 |
55 |
Casajus A . Weakly balanced contributions and the weighted Shapley values[J]. Journal of Mathematical Economics, 2021, 94, 102459.
doi: 10.1016/j.jmateco.2020.102459 |
56 |
Béal S , Ferrières S , Rémila E , et al. The proportional Shapley value and applications[J]. Games and Economic Behavior, 2018, 108, 93- 112.
doi: 10.1016/j.geb.2017.08.010 |
57 |
Besner M . Axiomatizations of the proportional Shapley value[J]. Theory and Decision, 2019, 86 (2): 161- 183.
doi: 10.1007/s11238-019-09687-7 |
58 |
Casajus A , Huettner F . Null players, solidarity, and the egalitarian Shapley values[J]. Journal of Mathematical Economics, 2013, 49 (1): 58- 61.
doi: 10.1016/j.jmateco.2012.09.008 |
59 |
Choudhury D , Borkotokey S , Kumar R , et al. The Egalitarian Shapley value: A generalization based on coalition sizes[J]. Annals of Operations Research, 2021, 301, 55- 63.
doi: 10.1007/s10479-020-03675-9 |
60 |
Kuipers J , Mosquera M A , Zarzuelo J M . Sharing costs in highways: A game theoretic approach[J]. European Journal of Operational Research, 2013, 228 (1): 158- 168.
doi: 10.1016/j.ejor.2013.01.018 |
61 |
Shapley L S , Shubik M . A method for evaluating the distribution of power in a committee system[J]. American Political Science Review, 1954, 48 (3): 787- 792.
doi: 10.2307/1951053 |
[1] | 孙攀飞, 孙浩. 合作博弈两类组合解的社会可接受性[J]. 运筹学学报(中英文), 2024, 28(3): 121-131. |
[2] | 袁先智. 共识博弈与区块链生态共识均衡[J]. 运筹学学报(中英文), 2024, 28(3): 1-26. |
[3] | 陈泽融, 肖汉. 最短路博弈群体单调分配方案构造[J]. 运筹学学报, 2022, 26(2): 101-110. |
[4] | 宫豆豆, 徐根玖, 侯东爽. 双边配给问题的Shapley解及其在博物馆通票问题中的应用[J]. 运筹学学报, 2022, 26(2): 45-54. |
[5] | 张广, 肖文君, 邬冬华. 图博弈的过程比例解[J]. 运筹学学报, 2021, 25(4): 101-110. |
[6] | 宣洪伟, 李振东, 盛舟山, 刘林冬. 灾后运输网络中的最短路修复合作博弈[J]. 运筹学学报, 2021, 25(3): 183-199. |
[7] | 于晓辉, 杜志平, 张强, 逄金辉. 基于T-联盟Shapley值的分配策略[J]. 运筹学学报, 2020, 24(4): 113-127. |
[8] | 于晓辉, 杜志平, 张强, 周珍, 逄金辉. 一种资源投入不确定情形下的合作博弈形式及收益分配策略[J]. 运筹学学报, 2019, 23(4): 71-85. |
[9] | 薛娟, 高红伟, 姜辉, 周允旭. 基于时隙ALOHA协议的数据传输二人随机博弈模型[J]. 运筹学学报, 2019, 23(4): 45-58. |
[10] | 肖燕, 李登峰. 带策略约束的区间数双矩阵博弈的双线性规划求解方法[J]. 运筹学学报, 2019, 23(4): 59-70. |
[11] | 侯丽娜, 孙海琳. 交通网络下的多厂商两阶段随机非合作博弈问题——基于随机变分不等式[J]. 运筹学学报, 2019, 23(3): 91-108. |
[12] | 王斯琪, 谢政, 戴丽. 一种求解合作博弈最公平核心的非精确平行分裂算法[J]. 运筹学学报, 2016, 20(2): 105-112. |
[13] | 胡勋锋, 李登峰. Shapley值与Winter值的解析关系[J]. 运筹学学报, 2015, 19(4): 114-120. |
[14] | 邓喜才,向淑文,左羽. 不确定性下强Berge均衡的存在性[J]. 运筹学学报, 2013, 17(3): 101-107. |
[15] | 彼得罗相. 微分对策中的联盟解[J]. 运筹学学报, 2012, 16(4): 86-94. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||