运筹学学报 ›› 2023, Vol. 27 ›› Issue (4): 33-60.doi: 10.15960/j.cnki.issn.1007-6093.2023.04.003

•   • 上一篇    下一篇

谱图理论中的未解决问题

刘乐乐1, 宁博2,*()   

  1. 1. 安徽大学数学科学学院, 安徽合肥 230601
    2. 南开大学计算机学院, 天津 300350
  • 收稿日期:2023-05-08 出版日期:2023-12-15 发布日期:2023-12-07
  • 通讯作者: 宁博 E-mail:bo.ning@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(12001370);国家自然科学基金(11971346)

Unsolved problems in spectral graph theory

Lele LIU1, Bo NING2,*()   

  1. 1. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
    2. College of Computer Science, Nankai University, Tianjin 300350, China
  • Received:2023-05-08 Online:2023-12-15 Published:2023-12-07
  • Contact: Bo NING E-mail:bo.ning@nankai.edu.cn
  • About author:宁博, E-mail: bo.ning@nankai.edu.cn

摘要:

谱图理论是图论中一个迷人的领域, 其利用与图相关的矩阵的特征值和特征向量来研究图的性质.本文收集了谱图理论中的若干公开问题和猜想, 按照内容的相关性将其分为20个主题.本文主要关注图的邻接矩阵中的相关问题, 并对这些问题和猜想的研究进展做了简要的梳理.

关键词: 特征值, 谱半径, 邻接矩阵, 谱图理论

Abstract:

Spectral graph theory is a captivating area of graph theory that employs the eigenvalues and eigenvectors of matrices associated with graphs to study them. In this paper, we present a collection of 20 topics in spectral graph theory, covering a range of open problems and conjectures. Our focus is primarily on the adjacency matrix of graphs, and for each topic, we provide a brief historical overview.

Key words: eigenvalues, spectral radius, adjacency matrix, spectral graph theory

中图分类号: