运筹学学报
• 运筹学 • 上一篇 下一篇
Tsegay Giday Woldu1,* 张海斌1 张鑫1 张芳1
收稿日期:
出版日期:
发布日期:
通讯作者:
基金资助:
国家自然科学基金(Nos. 61179033, 11771003)
Tsegay Giday Woldu1,* ZHANG Haibin1 ZHANG Xin1 ZHANG Fang1
Received:
Online:
Published:
摘要:
共轭梯度法是一类具有广泛应用的求解大规模无约束优化问题的方法. 提出了一种新的非线性共轭梯度(CG)法,理论分析显示新算法在多种线搜索条件下具有充分下降性. 进一步证明了新CG算法的全局收敛性定理. 最后,进行了大量数值实验,其结果表明与传统的几类CG方法相比,新算法具有更为高效的计算性能.
关键词: 无约束优化问题, 非线性共轭梯度法, 充分下降性, 全局收敛性
Abstract:
One of the widely used methods for solving large scale unconstrained optimization problems is the conjugate gradient method. In this paper, we propose a new nonlinear conjugate gradient method (CG), which satisfies the sufficient descent condition independent of any line search. We further establish global convergence theorem of the new CG method. Finally, a large amount of numerical experiments are carried out and reported. It shows that the proposed method has an efficient computational performance.
Key words: unconstrained optimization, nonlinear conjugate gradient method, sufficient decent condition, global convergence
Tsegay Giday Woldu, 张海斌, 张鑫, 张芳. 一种求解非线性无约束优化问题的充分下降的共轭梯度法[J]. 运筹学学报, doi: 10.15960/j.cnki.issn.1007-6093.2018.03.006.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.ort.shu.edu.cn/CN/10.15960/j.cnki.issn.1007-6093.2018.03.006
https://www.ort.shu.edu.cn/CN/Y2018/V22/I3/59