运筹学学报 ›› 2015, Vol. 19 ›› Issue (1): 18-30.

• 运筹学 • 上一篇    下一篇

二阶锥规划一个超线性收敛的非内部连续化算法

曾友芳1,*, 唐春明1   

  1. 1. 广西大学数学与信息科学学院,南宁 530004
  • 收稿日期:2014-09-28 出版日期:2015-03-15 发布日期:2015-03-15
  • 通讯作者: 曾友芳 E-mail:zengyf@gxu.edu.cn
  • 基金资助:

    广西大学科研基金(No. XBZ111216)

A non-interior-point continuous algorithm with superlinear convergence for second-order cone programming

ZENG Youfang1,*, TANG Chunming1   

  1. 1. College of Mathematics and Information Science, Guangxi University,  Nanning 530004, China
  • Received:2014-09-28 Online:2015-03-15 Published:2015-03-15

摘要: 基于非光滑向量值最小函数的一个新光滑函数, 建立了二阶锥规划一个超线性收敛的非内部连续化算法. 该算法的特点如下: 首先, 初始点任意; 其次, 每次迭代只需求解一个线性方程组即可得到搜索方向; 最后, 在无严格互补假设下, 获得算法的全局收敛性、强收敛性和超线性收敛性. 数值结果表明算法是有效的.

关键词: 二阶锥规划, 连续化算法, 向量值最小函数, 超线性收敛

Abstract: In this paper, based on a new smoothing function of the well-known nonsmooth vector-valued min-function, a non-interior-point continuous algorithm for second-order cone programming is presented. The features of this method are as follows: firstly, the starting point can be chosen arbitrarily; secondly, at each iteration, only one system of linear equations is performed for searching an improving direction; finally, global, strong and superlinear convergence are obtained without assumption of strict complementarity. The numerical results demonstrate the effectiveness of the algorithm.

Key words: second-order cone programming, continuous algorithm, vector-valued min-function, superlinear convergence

中图分类号: