运筹学学报 ›› 2015, Vol. 19 ›› Issue (1): 1-8.

• 运筹学 •    下一篇

两类锥广义伪不变凸性的刻画

唐莉萍1, 杨新民2,*   

  1. 1. 上海大学数学系,上海 200444; 2. 重庆师范大学数学科学学院,重庆 400047
  • 收稿日期:2014-12-11 出版日期:2015-03-15 发布日期:2015-03-15
  • 通讯作者: 杨新民 E-mail:xmyang@cqnu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(No.11431004), 国家自然科学基金(No.11271391)

Characterizations of two classes of cone generalized pseudoinvexity

TANG Liping1, YANG Xinmin2,*   

  1. 1. Department of Mathematics, Shanghai University, Shanghai 200444, China; 2. College of Mathematics Sciences, Chongqing Normal University, Chongqing 400047, China
  • Received:2014-12-11 Online:2015-03-15 Published:2015-03-15

摘要: 研究了一类非光滑带约束的向量优化问题. 首先引入锥意义下的 FJ-伪不变凸I(II)型的概念; 然后将经典的Gordan择一定理推广到了带锥的情形,并在此基础上利用FJ向量驻点与(弱)有效解间的关系, 研究了锥FJ-伪不变凸I(II)型的等价刻画.

关键词: 向量优化, FJ-伪不变凸I(II)型, FJ向量驻点, (弱)有效解

Abstract: In this paper, a class of nonsmooth vector optimization problem with constraints is considered. The concepts of FJ-pseudoinvexity-I(II) in the sense of cone are introduced;  Gordan's theorem over general cone domains is established; and then, FJ-pseudoinvexity-I(II) are characterized by the relationships between FJ vector critical points and the (weak) efficient solutions of nonsmooth vector optimization.

Key words: vector optimization, FJ-pseudoinvexity-I(II), FJ vector critical point, (weak) efficient solution

中图分类号: