摘要: 令$BS(G,f)=\sum\limits_{uv\in E(G)}|f(u)-f(v)|$, 其中$f$为$V(G)\rightarrow\{1,2,\cdots,|V(G)|\}$的双射, 并称$BS(G)=\min\limits_{f}BS(G,f)$为图$G$的带宽和. 讨论顶点数为$n$的简单图$G$加上一条边$e\in\overline{E(G)}$后, 带宽和$BS(G+e)$与$BS(G)$的关系, 得其关系式$BS(G)+1\leq BS(G+e)\leq BS(G)+n-1$. 并证明此不等式中等号可取到, 即存在图$G_{1}$和$G_{2}$使得$BS(G_{1}+e)=BS(G_{1})+1$, $BS(G_{2}+e)=BS(G_{2})+n-1$.
中图分类号: