运筹学学报 ›› 2014, Vol. 18 ›› Issue (2): 119-125.

• 运筹学 • 上一篇    

双准均衡合作对策\tau值的公理化

吴美容1,*, 孙浩2, 陈辉3   

  1. 1. 军事经济学院数理教研室,武汉 430035,
    2. 西北工业大学应用数学系,西安 710072,
    3. 湖北省武穴中学,湖北黄冈 435400
  • 出版日期:2014-06-15 发布日期:2014-06-15
  • 通讯作者: 吴美容 E-mail:wumeirong505@163.com
  • 基金资助:

    国家自然科学基金 (Nos. 71171163, 71271171)

On axiomatizations of the \tau value for bicooperative  quasibalanced games

 WU Meirong1,*, SUN Hao2, CHEN Hui3   

  1. 1. Department of Mathematics and Physics, Military Economics Academy, Wuhan 430035, China, 2. Department of Applied Mathematics Northwestern Polytechnical University, Xi'an 710072, China, 3. Wuxue Middle School in Hubei Province, Huanggang 435400, Hubei, China
  • Online:2014-06-15 Published:2014-06-15

摘要: 介绍了能准确刻画现实生活中每个参与者有三种选择的双合作对策,在此基础上研究了双合作对策的\tau值,并对双准均衡合作对策的\tau值进行了公理化,其中双合作对策的上向量、间隙函数、让步向量的构造是刻画其\tau值的基础.

关键词: 双合作对策, 双准均衡合作对策, \tau值

Abstract: There are three options for each participant in bicooperative games which can depict real life accurately. We study the \tau value on the basis of this research, then complete the axiomatizations of the \tau value for bicooperative  quasibalanced games. The \tau value is based on the construction of upper bound, gap function and concession vector for bicooperative games.

Key words: bicooperative games, bicooperative quasibalanced games, \tau value

中图分类号: