运筹学学报 ›› 2013, Vol. 17 ›› Issue (2): 53-69.doi: O225
任凤英1,2,*,李兴斯1
收稿日期:
2011-11-15
出版日期:
2013-06-15
发布日期:
2013-06-15
通讯作者:
任凤英
E-mail:rui5926@sina.com.cn
基金资助:
国家自然科学基金重大项目 (No. 10590354), 国家自然科学基金项目 (No. 105720310)
REN Fengying1,2,*,LI Xingsi1
Received:
2011-11-15
Online:
2013-06-15
Published:
2013-06-15
摘要: 在经典的完全市场中, 根据无套利原理, 能够为期权提供唯一的价格同时可以完全对冲风险. 在这样的理论假设下, 没有理由管理不好相关衍生产品的风险. 但是在现实的金融市场中, 有关衍生产品风险管理失败的案例时有发生, 特别是最近的金融危机使人们认识到, 现实的金融市场是非常复杂而不完全的. 在这样的市场中, 风险不能完全对冲, 定价与对冲问题也变得不易处理, 至今还没有一致接受的理论. 为了促进更深入的研究, 综述了各种在不完全市场中的定价与对冲方法, 侧重于基本思想和基本模型. 同时也探讨了各种方法的优缺点, 以及它们之间的联系, 突出了优化理论和方法在解决这类问题中的关键作用, 同时也分析了一些需要进一步研究的问题及方法上的空白点.
任凤英,李兴斯. 不完全市场定价与对冲方法[J]. 运筹学学报, 2013, 17(2): 53-69.
REN Fengying,LI Xingsi. Pricing and hedging in the incomplete finance market[J]. Operations Research Transactions, 2013, 17(2): 53-69.
Black F, Scholes M. The pricing of optons and corporate liabilities [J]. Journal of Polotical Economy, 1973, 81: 637-659. Jouini E. Arbitrage and control problems in finance: a presentation [J]. Journal of Mathematical Economics, 2001, 35: 167-183. Davis M H A. Valuation, hedging and investment in incomplete financial markets [M]//Applied Mathematics Entering the 21st Century: Invite Talks from the ICIAM 2003 Congress, Philadelphia: Society for Industrial and Applied Mathematics, 2004. Staum J. Incomplete Markets [M]//Handbooks in OR and MS, Elsevier, 2006, 511-563. Arrow K, Debreu G. Existence of equilibrium for a competitive economy [J]. Econometrica, 1954, 22: 265-290. Merton R C. An intertemporal capital asset pricing model [J]. Economitrica, 1973, 41: 867-888. Lucas R. Asset prices in an exchange economy [J]. Econometrica, 1978, 46: 1429-1445. Breeden D. An intertemporal asset pricing model with stochastic consumption and investment opportunities [J]. Journal of Financial Economics, 1979, 7: 265-296. Cox J C, Ingersoll J E, Ross S. An intertemporal general equilibrium model of asset prices [J]. Economitrica, 1985, 53: 363-384. Cuoco D, He H. Dynamic aggregation and computation of equilibria in finite-dimensional economies with incomplete financial markets [J]. Annals of Economics and Finance, 2001, 2: 265-296. Duffie D, Shafer W. Equilibrium in incomplete markets: I: A basic model of generic existence [J]. Journal of Mathematical Economics, 1985, 14: 285–300. Cuoco, D. Optimal consumption and equilibrium prices with portfolio constraints and stochastic income [J]. Journal of Economic Theory, 1997, 72: 33-73. Magill M, Quinzii M. Theory of incomplete markets [M]. Cambridge: MIT Press, 1996. Rubinstein M. Implied binomial trees [J]. Journal of Finance, 1994, 49(3): 771-818. Jackwerth J, Rubinstein M. Recovering probability distributions from option prices [J]. Journal of Finance, 1996, 51: 1611-1631. Jackwerth J. Recovering risk aversion from option prices and realized returns, [J]. Review of Financial Studies, 2000, 13: 433-451. Buchen P, Kelly M. The maximum entropy distribution of an asset inferred from option prices [J]. Journal of Financial and Quantitative Analysis, 1996, 31(1): 143-159. Stutzer M. A simple nonparametric approach to derivative security valuation [J]. Journal of Finance, 1996, 51: 1633-1652. Avellaneda M. Minimum-relative-entropy calibration of asset pricing models [J]. International Journal of Theoretical and Applied Finance, 1998, 1-28. Ait-Sahalia Y, Lo A. Nonparametric estimation of State-price densities implicit in financial asset prices [J]. Journal of Finance, 1998, 53(2): 499-547. Cont R. Beyond implied volatility [M]//Econophysics. Dordrecht: Kluwer, 1997. Jackwerth J C. Option implied risk-neutral distributions and implied binomial trees: A literature review [J]. Journal of Derivatives, 1999, 7(2): 66-82. Gerber H U, Shiu S W. Option pricing by Esscher transforms [J]. Transactions of society of actuaries, 1994, 46: Wang S S. A universal framework for pricing financial and insurance risks [J]. ASTIN Bulletin, 2002, 31: 213-234. Wang S S. Equilibrium pricing transforms: New results using Buhlmann's 1980 economic model [J]. ASTIN Bulletin, 2003, 33: 57-73. Reesor R M. Relative entropy, distortion, the bootstrap and risk [D]. Waterloo: University of Waterloo, 2001. Hodges S D, Neuberger A. Optimal replication of contingent claims under transactions costs [J]. Review of Futures Markets, 1989, 8: 222-239. Davis M H A. Option pricing in incomplete markets [M]//Mathematics of derivative se-curities. Cambridge: Cambridge University Press, 1997, 216-226. Carmona R. Indifference pricing: Theory and applications [M]. Princeton: Princeton University Press, 2008. Lo A. Semi-parametric upper bounds for option prices and expected payoffs [J]. Journal of Financial Economics, 1987, 19: 373-388. Grundy B. Option prices and the underlying asset's return distribution [J]. Journal of Finance, 1991, 46(3): 1045-1070. Boyle P, Lin X S. Bounds in contingent claims based on several assets [J]. Journal of Financial Economic, 1997, 46:383-400. Bertsimas D, Popescu I. On the relation between option and stock prices: An optimization approach [J]. Operations Research, 2002, 50:358-374. Merton R C. Theory of rational option pricing [J]. Bell Journal of econoics and Management Science, 1973, 4: 141-183. Perrakis S, Pyan P J. Option pricing bounds in discrete time [J]. Journal of Finance, 1984, 39: 519-525. Levy H. Upper and lover bponds of put and call option value: Stochastic dominance approach [J]. Journal of Finance, 1985, 40: 1283-1301. Ritchken P H. On option pricing bounds [J]. Journal of Finance, 1985, 40: 1219-1233. Ritchken P H, Kuo S. Stochastic dominance and decreasing absolute risk averse option pricing bounds [J]. Management Science, 1989, 35(1): 51-59. Constantinides G M, Perrakis S. Stochastic dominance bounds on derivative prices in a multiperiod economy with proportional transaction costs [J]. Journal of Economic Dynamic and Control, 2002, 26(1): 323-1352. Constantinides G M, Perrakis S. Stochastic donimance bounds on American option prices in markets with frictions [J]. Review of Finance, 2007, 71-115. Rosenberg J, Engle R. Empirical pricing kernels [J]. Journal of Financial Economics, 2002, 64: 341-372. Detlefsen K, Hardle W K, Moro R A. Empirical pricing kernels and investor preferences [R/OL]. Berlin: Humboldt University of Berlin, [2007/01/01], http://ideas.repec.org/p/hum/wpaper. Jackwerth J C. Option-implied risk-neutral distributions and risk aversion [M]. Charlotteville: Research Foundation of AIMR, 2004. Barone-Adesi G, Dall'O H. Is the pricing kernel monotone? [J]. ACRN Journal of Finance and Risk Perspectives, 2012, 1(2): 43-68. Follmer H, Sondermann D. Hedging of non-redundant contingent claims [M]//Contributions to Mathematical Economics, North-Holland: [s.n.], 1986, 205-223. Follmer H, Schweizer M. Hedging of contingent claims under incomplete information [M]//Applied stochastic analysis, New York: Gordon and Breach, 1991, 389-414. Schweizer M. Option hedging for semimartingales [J]. Stochastic Processes and their Application, 1991, 37: 339-363. Schweizer M. On the minimal martingale measure and the follmer-Schweizer decomposition [J]. Stochastic Analysis and Applications, 1995, 13: 573-599. Delbaen F, Schachermayer W. A simple counterexample to several problems in the theory of asset pricing [J]. Mathematical Finance, 1998, 8(1): 1-11. Bouleau N, Lamberton D. Residual risks and hedging strategies in markovian markets [J]. Stochastic Processes and their Applications, 1989, 33: 131-150. Duffie D, Richardson H R. Mean-variance hedging in continuous time [J]. Annals of Applied Probability, 1991, 1: 1-15. Schweizer M. Approximation pricing and the variance-optimal martingale measure [J]. Annals of Probability, 1996, 24: 206-236. Cerny A, Kallsen J. On the structure of general mean-variance hedging strategies [J]. The Annals of Probability, 2007, 35(5): 1479-1531. Kallsen J, Pauwels A. Variance-optimal hedging for time-changed Levy processes [J]. Applied Mathematical Finance, 2011, 18(1): 1–28. Follmer H, Leukert P. Quantile Hedging [J]. Finance Stochastic, 1999, 3: 251-273. Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk [J]. Mathematical Finance, 1999, 9: 203-228. Follmer H, Schied A. Convex measures of risk and trading constraints [J]. Finance and Stochastics, 2002, 6: 429-447. Frittelli M, Rosazza-Gianin E. Putting order in risk measures [J]. Journal of Banking and Finance, 2002, 26: 1473-1486. Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J]. Journal of Risk, 2000, 2: 21-41. Follmer H, Leukert P. Efficient hedging: cost versus shortfall risk [J]. Finance and Stochastics, 2000, 4(2): 117-146. Nakano Y. Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints [J]. Applied Mathematical Finance, 2003, 10(2): 163-181. Nakano Y. Efficient hedging with coherent risk measures [J]. Journal of Mathematical Analysis and Applications, 2004, 293(1): 345-354. Rudloff B. Coherent hedging in incomplete markets [J]. Quantitative Finance, 2009, 9(2): 197-206. Rudloff B. Convex hedging in incomplete markets [J]. Applied Mathematical Finance, 2007, 14(5): 437-452. Cochrane J H, Saa-Requejo J. Beyond arbitrage: good deal asset price bounds in incomplete markets [J]. Journal of Political Economy, 2000, 108: 79-119. Bjork T, Slimko I. Towards a general theory of good-deal bounds [J]. Review of Finance, 2006, 10: 221-260. Bernardo A E, Ledoit O. Gain, loss and asset pricing [J]. Journal of Political Economy, 2000, 108: 144-172. Hansen L P, Jagannathan R. Implications of security market data for models of dynamic economies [J]. Journal of Political Economy, 1991, 99(2): 225-262. Snow K N. Diagnosing Asset Pricing Models Using the Distribution of Asset Returns [J]. Journal of Finance, 1991, 46(3): 955-983. Stutzer M. A bayesian approach to diagnosis of asset pricing models [J]. Journal of Econometrics, 1995, 68: 367-397. Bansal R, Lehmann B N. Growth-optimal portfolio restrictions on asset pricing models [J]. Macroeconomic Dynamics 1997, 1: 333-354. Cerny A. Generalized sharpe ratios and asset pricing in incomplete markets [J]. European Finance Review, 2003, 7: 191-233. Kloppel S, Schweizer M. Dynamic utility-based good-deal bounds [J]. Statistics and Decisions, 2007, 25: 285-309. Jaschke S, Kuchler U. Coherent risk measures and good-deal bounds [J]. Finance and Stochastics, 2001, 5: 181-200. Staum J. Fundamental theorems of asset pricing for good deal bounds [J]. Mathematical Finance, 2004, 14(2): 141-161. Carr P, Geman H, Madan D B. Pricing and hedging in incomplete markets [J]. Journal of Financial Economics, 2001, 62: 131-167. Cherny A. Pricing with coherent risk [J]. Theory of Probability and its Applications, 2007, 52: 506-540. |
[1] | 林杨, 王应明. 不确定偏好序下的双边匹配博弈[J]. 运筹学学报, 2020, 24(1): 155-162. |
[2] | 薛娟, 高红伟, 姜辉, 周允旭. 基于时隙ALOHA协议的数据传输二人随机博弈模型[J]. 运筹学学报, 2019, 23(4): 45-58. |
[3] | 张淞钛, 徐秀丽. 具有两类故障特性的M/M/1排队系统均衡分析[J]. 运筹学学报, 2019, 23(4): 131-142. |
[4] | 侯丽娜, 孙海琳. 交通网络下的多厂商两阶段随机非合作博弈问题——基于随机变分不等式[J]. 运筹学学报, 2019, 23(3): 91-108. |
[5] | 高雷阜, 闫婷婷. 均衡约束数学规划问题的一类广义Mond-Weir型对偶理论[J]. 运筹学学报, 2019, 23(2): 95-103. |
[6] | 孟旭东, 王三华, 龚循华. 含参广义集值向量均衡问题有效解映射下半连续的最优条件[J]. 运筹学学报, 2018, 22(3): 79-88. |
[7] | 陈艳声, 邹辉文, 蔡立雄, 祝群. 一般均衡下基于产品市场和资本市场的单名CDS定价[J]. 运筹学学报, 2018, 22(1): 119-128. |
[8] | 王磊, 林崇, 谷岩, 刘翠, 高红伟. 无限阶段网络博弈中合作解的策略稳定性[J]. 运筹学学报, 2018, 22(1): 77-86. |
[9] | 张龙, 张玉忠, 柏庆国. 一类博弈排序问题的纳什均衡存在性证明 [J]. 运筹学学报, 2018, 22(1): 87-96. |
[10] | 田海燕, 张刚. 多选择NTU对策核心的一个非空条件及公理化[J]. 运筹学学报, 2015, 19(4): 97-106. |
[11] | 徐屹嵩, 王应明. 指派问题的多重最优解的择优方法[J]. 运筹学学报, 2014, 18(2): 96-102. |
[12] | 吴美容, 孙浩, 陈辉. 双准均衡合作对策\tau值的公理化[J]. 运筹学学报, 2014, 18(2): 119-125. |
[13] | 黄正海, 林贵华, 修乃华. 变分不等式与互补问题、双层规划与平衡约束数学规划问题的若干进展[J]. 运筹学学报, 2014, 18(1): 113-133. |
[14] | 黎健玲, 谢琴, 简金宝. 均衡约束数学规划的约束规格和最优性条件综述[J]. 运筹学学报, 2013, 17(3): 73-85. |
[15] | 邓喜才,向淑文,左羽. 不确定性下强Berge均衡的存在性[J]. 运筹学学报, 2013, 17(3): 101-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||