运筹学学报 ›› 2012, Vol. 16 ›› Issue (4): 86-94.

• 运筹学 • 上一篇    下一篇

微分对策中的联盟解

彼得罗相1   

  • 出版日期:2012-12-15 发布日期:2012-12-15
  • 通讯作者: 彼得罗相 E-mail:spbuoasis7@peterlink.ru

Coalitional solutions in differential games

Leon A. Petrosyan1   

  1. 1. St. Petersburg University, Universitetsky pr. 35
  • Online:2012-12-15 Published:2012-12-15
  • Contact: Leon A. Petrosyan E-mail:spbuoasis7@peterlink.ru

摘要: 提出时间区间[t_0,∞)上的n人微分对策两阶段联盟解. 在第一阶段不能形成大联盟的假设是自然的,即源于这一思想. 在第一阶段以联盟作为局中人的对策中计算得到其纳什均衡,之后对每个联盟的收益按Shapley值进行分配. 一个n人微分减排模型的例子阐明了上述结果.

关键词: 微分对策, Hamilton--Jacobi--Bellman方程, 联盟剖分, Shapley值, Nash均衡, PMS-值

Abstract: The two-stage (level) coalitional solution for n-person differential game played over the time interval [t_0,∞) is proposed. The paper emerges from the
idea that it is natural not to assume that coalitions on the first level can form a grand coalition. At first level the Nash equilibrium in the game played by coalitions is computed. Secondly the value of each coalition is allocated according to the Shapley value. The results are illustrated by an example of n-person differential emission reduction model.

Key words: differential game, Hamilton--Jacobi--Bellman equation, coalitional partition, Shapley value, Nash equilibrium, PMS-value

中图分类号: