Zangwill W I. Non-linear programming via penalty functions [J]. Manage Sci, 1967, 13: 344-358. Burke J. Calmness and exact penalization [J]. SIAM J Control and Optimization, 1991, 29: 493-497. Evans J P, Gould F J, Tolle J W. Exact Penalty Function in Nonlinear Programming [J]. Math Prog, 1973, 4: 72-97. Fletcher R. Penalty functions in mathematical programming [M]. The state of the art, A. Bachen et al(eds), Berlin: Springer-Verlag, 1983: 87-114. Pillo G D. Exact penalty methods, Algorithms for continuous Optimization [M]. E. Spedicato(ed.), Dordrecht: Kluwer Academic Publishers, 1994: 209-253 Auslender A, Cominetti R, Haddou M. Asymptotic analysis for penalty and barrier methods in convex and linear programming [J]. Mathematics of Operations Research, 1997, 22: 43-62. Ben-Tal A, Teboulle M. A smoothing technique for non-differentible optimization problems [C]. Lecture Notes in Mathematics, Berlin: Springer Verlag, 1989, 1405: 1-11. Gonzaga C C, Gastillo R A. A nonlinear programming algorithm based on non-coercive penalty functions [J]. Mathematical Programming, Ser. A, 2003, 96: 87-101. Pinar M, Zenios S. On smoothing exact penalty functions for convex constrained optimization [J]. SIAM Journal on Optimization, 1994, 4: 468-511. Wu Z Y, Lee H W J, Bai F S, et al. Quaradic smoothing approximation to l_{1} exact penalty function in global optimization [J]. Journal of Industrail and Management Optimization, 2005, 53: 533-547. Liu B Z. On smoothing exact penalty functions for nonlinear constrained optimization problems [J]. Journal of Applied Mathematics and Computing, 2009, 30: 259-270. Yu C J, Teo K L, Zhang L S, et al. A new exact penalty function method for continuous inequality constrained optimization problems [J]. Journal of Industrial and Management Optimization, 2010, 6(4): 895-910. Huang X X, Yang X Q. A Unified Augmented Lagrangian Approach to Duality and Exact Penalization [J]. Mathematic of Operations Research, 2003, 28: 533-552. Huang X X, Yang X Q. Convergence analysis of a class of nonlinear penalization methods for constrained optimization via first-order necessary optimality conditions [J]. Journal of Optimization Theory and Applications, 2003, 116(2): 311-332. Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Constraints [M]. Cambridge: Cambridge University Press, 1996. Rubinov A M, Yang X Q, Bagirov A M. Penalty functions with a small penalty parameter [J]. Optimization Methods and software, 2002, 17: 931-964. Rubinov A M, Yang X Q. Lagrange-type functions in nonconvex constrained optimization [M]. Dordrecht: Kluwer Academic Publishers, 2003. He Z H, Bai F S. A smoothing approximation to the lower order exact penalty function [J]. Operations research Transactions, 2010, 14(2): 11-22. Shang Y L, Liu M H, Li P. A new penalty function based on non-coercive penalty functions [J]. Operations research Transactions, 2012, 16(1): 56-66. Bai F S, Wu Z Y, Zhu D L. Lower order calmness and exact penalty function [J]. Optimization Methods and Software, 2006, 21: 515-525. Wu Z Y, Bai F S, Yang X Q, et al. An exact lower order penalty function and its smoothing in nonlinear programming [J]. Optimization, 2004, 53: 51-68. Meng Z Q, Dang C Y, Yang X Q. On the smoothing of the squareroot exact penalty function for inequality constrained optimization [J]. Computational Optimization and Applications, 2006, 35: 375-398. Bazaraa M S, Sherali H D, Shetty C M. Nonlinear Programming: Theory and Algorithms [M]. second Edition, John Wiley Sons, Inc., New York, 1993. Lasserre J B. A globally convergent algorithm for exact penalty functions [J]. European Journal of Operational Research, 1981, 7: 389-395. Sun X L, Li D. Value-estimation function method for for constrained global optimization [J]. Journal of Optimization Theory and Applications, 1999, 24: 385-409. |