运筹学学报 ›› 2012, Vol. 16 ›› Issue (1): 31-40.

• 运筹学 • 上一篇    下一篇

完全多部图与完全图Kronercker积的点参数研究

唐丹1,王鹤朝1, 单而芳1   

  1. 1.  上海大学数学系, 上海, 200444
  • 收稿日期:2011-01-12 修回日期:2011-10-10 出版日期:2012-03-15 发布日期:2012-03-15
  • 通讯作者: 唐丹 E-mail:tangdan@shu.edu.cn

Vertex vulnerability parameters of Kronecker products of complete multipartite graphs and complete graphs

 TANG  Dan1, WANG  He-Chao1, DAN  Er-Fang1   

  1. 1. Department of Mathematics, Shanghai University, Shanghai 200444,  China
  • Received:2011-01-12 Revised:2011-10-10 Online:2012-03-15 Published:2012-03-15
  • Contact: Dan Tang E-mail:tangdan@shu.edu.cn
  • Supported by:

    This Research was partially supported by PuJiang Project of Shanghai (No. 09PJ1405000), The National Nature Science Foundation of China (No. 11171207) and Shanghai Leading Academic Discipline Project (No. S30104).

摘要: 若G1和G2是两个图,G1和G2的Kronecker图定义为V (G1×G2)= V (G1) × V (G2 E(G1 × G2)= {(u1,v1)(u2,v2)。在本文中,我们计算了p-部完全图 m1,m2,...,mp 和完全图Kn 的Kronecker积的顶点参数,m1 ≤ m2 ≤ ... ≤ mp,2 ≤ p ≤ n, and n ≥ 3 ,扩展了Mamut和Vumar的相关结论[Inform. Process. Lett. 106(2008)258-262].

关键词: Kronecker积,  , 点脆弱性参数, 割集, 完全$p$-部图, 完全图

Abstract: Let G_1 and G_2 be two graphs. The Kronecker product G_1\times G_2 is defined as V(G_1\times G_2)=V(G_1)\times V(G_2) and E(G_1\times G_2)=\{(u_1,v_1)(u_2,v_2):u_1u_2\in E(G_1) and v_1v_2\in E(G_2)\}. In this paper we compute several vertex vulnerability parameters of Kronecker product of a complete p-partite graph K_{m_{1},m_{2},\ldots,m_{p}} and a complete graph K_n on n vertices, where m_{1}\leq m_{2}\leq \ldots \leq m_{p}, 2\leq p\leq n, and n\geq3. This result generalizes the previous result by Mamut and Vumar.

Key words: Kronecker product, vertex vulnerability parameter, cut set, complete $p$-partite graph, complete graph