摘要: 本文通过构造水平集辅助函数对一类积分全局最优性条件进行研究. 所构造的辅助函数仅含有一个参数变量与一个控制变量,该参数变量用以表征对原问题目标函数最优值的估计,而控制变量用以控制积分型全局最优性条件的精度. 对参数变量做极限运算即可得到积分型全局最优性条件.继而给出了用该辅助函数所刻画的全局最优性的充要条件, 从而将原全局优化问题的求解转化为寻找一个非线性方程根的问题.更进一步地,若所取测度为勒贝格测度且积分区域为自然数集合的一个有限子集, 则该积分最优性条件便化为有限极大极小问题中利用凝聚函数对极大值函数进行逼近的近似系统.从而积分型全局最优性条件可以看作是该近似系统从离散到连续的一种推广.
中图分类号: