[1] Palm C. The distribution of repairmen in serving automatic machines [J]. Industritidningen Norden, 1947, 75: 75-80. [2] Gross D, Shortle J F, Thompson J M, et al. Fundamentals of Queueing Theory [M]. New York: Wiley & Sons, 2008. [3] 高春燕. 兼职辅助业务的机器维修模型[D]. 秦皇岛: 燕山大学, 2006. [4] 孟艳丽. 基于有限源排队的机器维修模型的优化研究[D]. 大连: 大连海事大学, 2019. [5] 付永红, 余玅妙, 唐应辉, 等. 两水平修理策略下的M/(Mr,Gs)/1/N/N机器维修模型稳态概率算法与性能分析[J]. 山东大学学报(理学版), 2009, 4(44): 72-78. [6] 张静. 带有休假策略的温贮备机器维修问题的性能分析[D]. 秦皇岛: 燕山大学, 2012. [7] Ke J C, Wang K H. Vacation policies for machine repair problem with two type spares [J]. Applied Mathematical Modelling, 2007, 31(5): 880-894. [8] Wang K H, Chen W L, Yang D Y. Optimal management of the machine repair problem with working vacation: Newton’s method [J]. Journal of Computational and Applied Mathematics, 2009, 233(2): 449-458. [9] Ke J C, Wu C H. Multi-server machine repair model with standbys and synchronous multiple vacation [J]. Computers & Industrial Engineering, 2012, 62(1): 296-305. [10] Wang K H, Su J H, Yang D Y. Analysis and optimization of an M/G/1 machine repair problem with multiple imperfect coverage [J]. Applied Mathematics and Computation, 2014, 242(1): 590-600. [11] Chen W L, Wang K H. Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy [J]. Reliability Engineering & System Safety, 2018, 180(12): 476-486. [12] 曹晋华. 服务设备可修的机器服务模型分析[J]. 数学研究与评论, 1985, 5(4): 89-96. [13] Tang Y H. Revisiting the model of servicing machines with repairable service facility-a new analyzing idea and some new results [J]. Acta Mathematicae Sinica, 2010, 26(4): 557-566. [14] Neuts M F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach [M]. Baltimore: The Johns Hopkins University Press, 1981. |