[1] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. [2] Candès E J, Recht B. Exact matrix completion via convex optimization [J]. Communications of the ACM, 2012, 55(6): 111-119. [3] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159. [4] Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization [J]. SIAM Review, 2010, 52(3): 471-501. [5] Tao M, Yuan X. Recovering low-rank and sparse components of matrices from incomplete and noisy observations [J]. SIAM Journal on Optimization, 2011, 21(1): 57-81. [6] Tibshirani R J. Regression shrinkage and selection via the Lasso [J]. Journal of the Royal Statistical Society: Series B, 1996, 58: 267-288. [7] Yuan X. Alternating direction method for covariance selection models [J]. Journal of Scientific Computing, 2012, 51(2): 261-273. [8] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation [J]. Computers and Mathematics with Applications, 1976, 2(1): 17-40. [9] Glowinski R, Marrocco A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires [J]. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 1975, 9: 41-76. [10] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. [11] Eckstein J, Wang Y. Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives [J]. Pacific Journal of Optimization, 2015, 11(4): 619-644. [12] Glowinski R. On alternating direction methods of multipliers: A historical perspective [J]. Modeling, Simulation and Optimization for Science and Technology, 2014, 34: 59-82. [13] Gu Y, Jiang B, Han D. A semi-proximal-based strictly contractive Peaceman-Rachford splitting method [EB/OL]. [2022-10-21]. arXiv:1506.02221 [14] Han D. A survey on some recent developments of alternating direction method of multipliers [J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52. [15] Li X, Mo L, Yuan X, et al. Linearized alternating direction method of multipliers for sparse group and fused Lasso models [J]. Computational Statistics and Data Analysis, 2014, 79: 203-221. [16] Yang J, Yuan X. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization [J]. Mathematics of Computation, 2013, 82(281): 301-329. [17] Han D, Sun D, Zhang L. Linear rate convergence of the alternating direction method of multipliers for convex composite programming [J]. Mathematics of Operations Research, 2018, 43(2): 622-637. [18] He B, Ma F, Yuan X. Optimal linearized alternating direction method of multipliers for convex programming [J]. Computational Optimization and Applications, 2020, 75(2): 361-388. [19] Li M, Sun D, Toh K C. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization [J]. SIAM Journal on Optimization, 2016, 26(2): 922-950. [20] Gao B, Ma F. Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization [J]. Journal of Optimization Theory and Applications, 2018, 176(1): 178-204. [21] Jiang F, Wu Z, Cai X. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization [J]. Journal of Industrial and Management Optimization, 2020, 16(2): 835-856. [22] Chen J, Wang Y, He H, et al. Convergence analysis of positive-indefinite proximal ADMM with a Glowinski’s relaxation factor [J]. Numerical Algorithms, 2020, 83(4): 1415-1440. [23] Tao M. Convergence study of indefinite proximal ADMM with a relaxation factor [J]. Computational Optimization and Applications, 2020, 77(1): 91-123. [24] Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators [J]. Mathematical Programming, 1992, 55(3): 293- 318. [25] He B, Liao L, Han D, et al. A new inexact alternating directions method for monotone variational inequalities [J]. Mathematical Programming, 2002, 92: 103-118. [26] Eckstein J, Silva P J. A practical relative error criterion for augmented Lagrangians [J]. Mathematical Programming, 2013, 141(1-2): 319-348. [27] Eckstein J, Yao W. Approximate ADMM algorithms derived from Lagrangian splitting [J]. Computational Optimization and Application, 2017, 68(2): 363-405. [28] Eckstein J, Yao W. Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM [J]. Mathematical Programming, 2018, 170(2): 417-444. [29] Alves M M, Marcavillaca R T. On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng’s modified forward-backward methods with inertial effects [J]. Set-Valued and Variational Analysis, 2020, 28(2): 301-325. [30] Jiang F, Cai X, Wu Z, et al. Approximate first-order primal-dual algorithms for saddle point problems [J]. Mathematics of Computation, 2021, 90(329): 1227-1262. [31] Jiang F, Wu Z. An inexact symmetric ADMM algorithm with indefinite proximal term for sparse signal recovery and image restoration problems [J]. Journal of Computational and Applied Mathematics, 2023, 417: 114628. [32] Xie J, Liao A, Yang X. An inexact alternating direction method of multipliers with relative error criteria [J]. Optimization Letters, 2017, 11(3): 583-596. [33] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 60: 259-268. [34] He H, Han D, Li Z. Some projection methods with the bb step sizes for variational inequalities [J]. Journal of Computational and Applied Mathematics, 2012, 236: 2590-2604. |