运筹学学报(中英文) ›› 2025, Vol. 29 ›› Issue (1): 41-54.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.004
收稿日期:
2021-12-26
出版日期:
2025-03-15
发布日期:
2025-03-08
通讯作者:
吴至友
E-mail:zywu@cqnu.edu.cn
基金资助:
Miaohui HE1, Xuxiang DUAN1, Zhiyou WU1,*()
Received:
2021-12-26
Online:
2025-03-15
Published:
2025-03-08
Contact:
Zhiyou WU
E-mail:zywu@cqnu.edu.cn
摘要:
知识图谱是众多智能应用中一种重要的语义数据, 但其数据的不完备性给实际应用带来了很多困难, 因此需要对知识图谱中缺失的语义信息进行补全。知识图谱嵌入是知识图谱补全的重要方法之一, 这类方法通常在非长尾数据情况下具有较好的效果, 但在长尾数据情况下其效果较差。由于非长尾数据的语义较丰富, 为了提升长尾数据情况下知识图谱补全效果, 本文将非长尾数据作为监督知识迁移到长尾数据中, 提出了一种新的算法——融入期望最大化算法思想的双重嵌入方法, 来改进长尾数据的知识图谱补全性能, 进而提高其实际应用效果。通过在FB15K数据集中进行链接预测任务的对比实验, 实验结果表明本文提出的融入期望最大化算法思想的双重嵌入方法效果较好。
中图分类号:
何苗惠, 段旭祥, 吴至友. 提高长尾数据知识图谱补全性能的一种新算法[J]. 运筹学学报(中英文), 2025, 29(1): 41-54.
Miaohui HE, Xuxiang DUAN, Zhiyou WU. A new algorithm for improving the completion performance of knowledge graph of long-tail data[J]. Operations Research Transactions, 2025, 29(1): 41-54.
表1
最佳超参数设置"
| | | | neg | | | |
TransE | 0.3 | 300 | 3 | 25 | |||
TransE-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 | |
TransH | 0.3 | 300 | 3 | 25 | |||
TransH-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 | |
TransD | 0.3 | 300 | 3 | 25 | |||
TransD-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 |
表4
FB15K测试数据的链接预测结果"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 224.81 | 129.40 | 0.248 | 0.418 | 0.498 | 0.658 |
TransE-DEM | ||||||
TransH | 221.45 | 126.64 | 0.245 | 0.413 | 0.495 | 0.657 |
TransH-DEM | ||||||
TransD | 221.82 | 126.62 | 0.246 | 0.417 | 0.497 | 0.660 |
TransD-DEM |
表5
FB15K非长尾测试集的链接预测结果"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 203.17 | 119.80 | 0.250 | 0.427 | 0.515 | 0.674 |
TransE-DEM | ||||||
TransH | 200.73 | 117.56 | 0.246 | 0.422 | 0.511 | 0.671 |
TransH-DEM | ||||||
TransD | 199.81 | 116.63 | 0.249 | 0.427 | 0.514 | 0.676 |
TransD-DEM |
表6
FB15K长尾测试集的链接预测结果"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 438.86 | 224.38 | 0.219 | 0.328 | 0.329 | 0.504 |
TransE-DEM | ||||||
TransH | 426.43 | 216.45 | 0.226 | 0.331 | 0.332 | 0.510 |
TransH-DEM | ||||||
TransD | 439.65 | 225.48 | 0.217 | 0.326 | 0.325 | 0.507 |
TransD-DEM |
1 | Yang Y, Agrawal D, Jagadish H V, et al. An efficient parallel keyword search engine on knowledge graphs [C]//2019 IEEE 35th International Conference on Data Engineering, 2019: 338-349. |
2 | Yao X, Van Durme B. Information extraction over structured data: Question answering with freebase [C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 956-966. |
3 | Zhang F, Yuan N J, Lian D, et al. Collaborative knowledge base embedding for recommender systems [C]//Proceedings of the 22nd ACM SIGKDD Iinternational Conference on Knowledge Discovery and Data Mining, 2016: 353-362. |
4 |
Rotmensch M , Halpern Y , Tlimat A , et al. Learning a health knowledge graph from electronic medical records[J]. Scientific Reports, 2017, 7 (1): 1- 11.
doi: 10.1038/s41598-016-0028-x |
5 |
Suchanek F M , Kasneci G , Weikum G . Yago: A large ontology from wikipedia and wordnet[J]. Journal of Web Semantics, 2008, 6 (3): 203- 217.
doi: 10.1016/j.websem.2008.06.001 |
6 |
Lehmann J , Isele R , Jakob M , et al. DBpedia|A large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6 (2): 167- 195.
doi: 10.3233/SW-140134 |
7 |
Miller G A . WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38 (11): 39- 41.
doi: 10.1145/219717.219748 |
8 | Carlson A, Betteridge J, Kisiel B, et al. Toward an architecture for never-ending language learning [C]//Twenty-fourth AAAI Conference on Artificial Intelligence, 2010: 1306-1313. |
9 | Bordes A , Usunier N , Garcia-Duran A , et al. Translating embeddings for modeling multirelational data[J]. Advances in Neural Information Pprocessing Systems, 2013, 2, 2787- 2795. |
10 | Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes [C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119. |
11 | Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion [C]//Twenty-ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2187. |
12 | Ji G, He S, Xu L, et al. Knowledge graph embedding via dynamic mapping matrix [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696. |
13 | Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data [C]//International Conference on Machine Learning, 2011: 809-816. |
14 | Yang B, Yih W, He X, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. (2015-08-29)[2021-11-26]. arXiv: 1412.6575. |
15 | Trouillon T, Welbl J, Riedel S, et al. Complex embeddings for simple link prediction [C]//International Conference on Machine Learning, 2016: 2071-2080. |
16 | Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2nd knowledge graph embeddings [C]//Thirty-second AAAI Conference on Artificial Intelligence, 2018: 1811-1818. |
17 | Vu T, Nguyen T D, Nguyen D Q, et al. A capsule network-based embedding model for knowledge graph completion and search personalization [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 2180-2189. |
18 | Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge graph embedding by relational rotation in complex space [C]//Proceedings of the International Conference on Learning Representations, 2019: 926-934. |
19 | Zhang S, Tay Y, Yao L, et al. Quaternion knowledge graph embeddings [C]//Advances in Neural Information Processing Systems, 2019: 2731-2741. |
20 | Akrami F, Saeef M S, Zhang Q, et al. Realistic re-evaluation of knowledge graph completion methods: An experimental study [C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 1995-2010. |
21 | Metz L, Maheswaranathan N, Cheung B, et al. Meta-learning update rules for unsupervised representation learning [EB/OL]. (2019-02-26)[2021-11-25]. arXiv: 1804.00222. |
22 |
Zhang Z , Zhuang F , Qu M , et al. Knowledge graph embedding with shared latent semantic units[J]. Neural Networks, 2021, 139, 140- 148.
doi: 10.1016/j.neunet.2021.02.013 |
23 |
Dempster A P , Laird N M , Rubin D B . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x |
[1] | 李晶, 胡林敏, 李明佳. 基于重试机制与转换失效的k/(M+N): G系统可靠性建模与优化[J]. 运筹学学报(中英文), 2024, 28(4): 44-56. |
[2] | 邓生翔, 郦旭东. 多面体投影算子广义雅克比的高效计算及拓展[J]. 运筹学学报, 2023, 27(4): 61-80. |
[3] | 于静, 徐哲, 谢芳. 带有活动重叠的项目调度问题新算法: 分支定界法[J]. 运筹学学报, 2023, 27(1): 115-126. |
[4] | 代宇波, 段懿红, 刘龙城, 王子豪. 一类一维在线单位聚类问题的随机近似算法[J]. 运筹学学报, 2022, 26(3): 143-150. |
[5] | 吕袈豪, 罗洪林, 杨泽华, 彭建文. 随机Bregman ADMM及其在训练具有离散结构的支持向量机中的应用[J]. 运筹学学报, 2022, 26(2): 16-30. |
[6] | 张慧玲, 赛·闹尔再, 吴晓云. 修正PRP共轭梯度方法求解无约束最优化问题[J]. 运筹学学报, 2022, 26(2): 64-72. |
[7] | 吕亚星, 韩美佳, 黄子麟, 朱文兴. 非负约束稀疏优化问题的一个等价性条件[J]. 运筹学学报, 2022, 26(1): 43-59. |
[8] | 徐晨, 徐寅峰, 郑斐峰. 考虑部分工件不可打扰的多任务调度问题研究[J]. 运筹学学报, 2021, 25(4): 91-100. |
[9] | 周雪玲, 李梅霞, 车海涛. 多集分裂等式问题的逐次松弛投影算法[J]. 运筹学学报, 2021, 25(2): 93-103. |
[10] | 宋珊, 冯岩, 徐常青. 基于正交稀疏约束非负张量分解的人脸识别算法[J]. 运筹学学报, 2021, 25(2): 55-66. |
[11] | 叶加青, 陈倩竹, 胡海平. 梯度Q-线性收敛的光滑凸极小化的一阶算法[J]. 运筹学学报, 2021, 25(1): 96-106. |
[12] | 苗小楠, 顾剑, 肖现涛. 求解非光滑方程组的三次正则化方法[J]. 运筹学学报, 2019, 23(2): 17-30. |
[13] | 高雷阜, 闫婷婷. 均衡约束数学规划问题的一类广义Mond-Weir型对偶理论[J]. 运筹学学报, 2019, 23(2): 95-103. |
[14] | 陈薪蓓, 朱明康, 陈建利. 基于迭代投影的梯度硬阈值追踪算法[J]. 运筹学学报, 2019, 23(1): 1-14. |
[15] | 徐娇娇, 杨志霞, 蒋耀林. 基于块循环矩阵的对称张量的最佳秩-1逼近[J]. 运筹学学报, 2019, 23(1): 53-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||