运筹学学报 ›› 2021, Vol. 25 ›› Issue (1): 50-60.doi: 10.15960/j.cnki.issn.1007-6093.2021.01.004

•   • 上一篇    下一篇

强收敛的球松弛CQ算法及其应用

于海1,2,*(), 詹婉荣1   

  1. 1. 洛阳师范学院数学科学学院, 河南洛阳 471934
    2. 洛阳师范学院, 河南省电子商务大数据处理与分析重点实验室, 河南洛阳 471934
  • 收稿日期:2019-06-03 出版日期:2021-03-15 发布日期:2021-03-05
  • 通讯作者: 于海 E-mail:yuhai2000@126.com
  • 作者简介:于海 E-mail: yuhai2000@126.com
  • 基金资助:
    国家自然科学基金(11971216);国家自然科学基金(62072222);河南省高等学校重点科研项目(20A110029)

Strongly convergent ball-relaxed CQ algorithm and its application

Hai YU1,2,*(), Wanrong ZHAN1   

  1. 1. School of Mathematical Sciences, Luoyang Normal University, Luoyang 471934, Henan, China
    2. Henan KeyLaboratory for Big Data Processing and Analysis of ElectronicCommerce, Luoyang Normal University, Luoyang 471934, Henan, China
  • Received:2019-06-03 Online:2021-03-15 Published:2021-03-05
  • Contact: Hai YU E-mail:yuhai2000@126.com

摘要:

为了求解分裂可行问题,Yu等提出了一个球松弛CQ算法。由于该算法只需计算到闭球上的投影,同时不需要计算有界线性算子的范数,该算法是容易实现的。但是球松弛CQ算法在无穷维Hilbert空间中仅仅具有弱收敛性。首先构造了一个强收敛的球松弛CQ算法。在较弱的条件下,证明了算法的强收敛性。其次将该算法应用到一类闭凸集上的投影问题上。最后,数值试验验证了该算法的有效性。

关键词: 分裂可行问题, CQ算法, 强收敛, 强凸函数

Abstract:

In order to solve the split feasibility problem, Yu et al. proposed a ballrelaxed CQ algorithm. Since this algorithm only needs to calculate the projection on the closed balls and does not need to calculate the norm of bounded linear operator, it is easy to implement. But the ball-relaxed CQ algorithm only has weak convergence in infinite dimensional Hilbert spaces. Firstly, a strongly convergent ball-relaxed CQ algorithm is constructed. Under weaker conditions, the strong convergence of the algorithm is proved. Secondly, the algorithm is applied to the projection problem on a class of closed convex sets. Finally, numerical experiments verify the effectiveness of the algorithm.

Key words: split feasibility problem, CQ algorithm, strongconvergence, strongly convex function

中图分类号: