1 |
Censor Y , Elfving T . A multiprojection algorithm using Bregman projections in product space[J]. Numerical Algorithms, 1994, 8, 221- 239.
doi: 10.1007/BF02142692
|
2 |
López G , Martín V , Wang F , et al. Solving the split feasibility problem without prior knowledge of matrix norms[J]. Inverse Problems, 2012, 28, 085004.
doi: 10.1088/0266-5611/28/8/085004
|
3 |
Byrne C . Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems, 2002, 18, 441- 453.
doi: 10.1088/0266-5611/18/2/310
|
4 |
Byrne C . A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems, 2004, 20, 103- 120.
doi: 10.1088/0266-5611/20/1/006
|
5 |
Qu B , Xiu N . A note on the CQ algorithm for the split feasibility problem[J]. Inverse Problems, 2005, 21, 1655- 1665.
doi: 10.1088/0266-5611/21/5/009
|
6 |
Wang F . On the convergence of CQ algorithm with variable steps for the split equality problem[J]. Numerical Algorithms, 2017, 74, 927- 935.
doi: 10.1007/s11075-016-0177-9
|
7 |
Wang F , Xu H , Su M . Choices of variable steps of the CQ algorithm for the split feasibility problem[J]. Fixed Point Theory, 2011, 12, 489- 496.
|
8 |
Yang Q . On variable-step relaxed projection algorithm for variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2005, 302, 166- 179.
doi: 10.1016/j.jmaa.2004.07.048
|
9 |
He S , Zhao Z , Luo B . A relaxed self-adaptive CQ algorithm for the multiple-setes split feasibility problem[J]. Optimization, 2015, 64, 1907- 1918.
doi: 10.1080/02331934.2014.895898
|
10 |
Moudafi A . A relaxed alternating CQ-algorithm for convex feasibility problems[J]. Nonlinear Analysis, 2013, 79, 117- 121.
doi: 10.1016/j.na.2012.11.013
|
11 |
Qu B , Xiu N . A new halfspace-relaxation projection method for the split feasibility problem[J]. Linear Algebra and its Applications, 2008, 428, 1218- 1229.
doi: 10.1016/j.laa.2007.03.002
|
12 |
Wang F . Polyak's gradient method for split feasibility problem constrained by level sets[J]. Numerical Algorithms, 2018, 77, 925- 938.
doi: 10.1007/s11075-017-0347-4
|
13 |
Yang Q . The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems, 2004, 20, 1261- 1266.
doi: 10.1088/0266-5611/20/4/014
|
14 |
Yu H , Zhan W , Wang F . The ball-relaxed CQ algorithms for the split feasibility problem[J]. Optimization, 2018, 67 (10): 1687- 1699.
doi: 10.1080/02331934.2018.1485677
|
15 |
Bauschke H , Combettes P . Convex Analysis and Monotone Operator Theory in Hilbert Space[M]. New York: Springer-Verlag, 2011.
|
16 |
He S , Tian H . Selective projection methods for solving a class of variational inequalities[J]. Numerical Algorithms, 2019, 80 (2): 617- 634.
doi: 10.1007/s11075-018-0499-x
|
17 |
Xu H . A variable Krasnosel¨skii-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems, 2006, 22 (6): 2021- 2034.
doi: 10.1088/0266-5611/22/6/007
|
18 |
Lin A, Han S. Projection on an ellipsoid[R]. Department of Mathematical Sciences, The Johns Hopkins University, 2001.
|
19 |
Dai Y . Fast algorithms for projection on an ellipsoid[J]. SIAM Journal on Optimization, 2006, 16 (4): 986- 1006.
doi: 10.1137/040613305
|