Operations Research Transactions >
2024 , Vol. 28 >Issue 3: 27 - 45
DOI: https://doi.org/10.15960/j.cnki.issn.1007-6093.2024.03.002
New advances in population game theory
Received date: 2024-06-11
Online published: 2024-09-07
Copyright
Population game theory is a new direction of game theory, developed in recent thirty years, which originated from "Mass-Action" interpretation on mixed strategies and equilibria in 1950 by J. Nash in his PhD dissertation. It established rational decision making theory for individuals in population and society consisting of large number of individuals, and has been applied extensively and intensively in sociology, biology, economics, management science and information science, etc. In this paper, we give a review on recent advances of population game theory and investigate new developing directions.
Hui YANG . New advances in population game theory[J]. Operations Research Transactions, 2024 , 28(3) : 27 -45 . DOI: 10.15960/j.cnki.issn.1007-6093.2024.03.002
| 1 | von Nuemann J , Morgenstern O . Theory of Games and Economic Behavior[M]. Princeton: Prentice-Hall, 1944. |
| 2 | Nash J . Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36, 48- 49. |
| 3 | Nash J . Noncoopertive games[J]. Annals of Mathematics, 1951, 54, 286- 295. |
| 4 | Nash J. N-person nonooprative games[D]. Princeton: Princeton University, 1950. |
| 5 | Blume L. Population Games[R]. New Mexico: Santa Fe Institute, 1996. |
| 6 | Sandholm W H . Population Games and Evolutionary Dynamics[M]. Cambridge: MIT Press, 2010. |
| 7 | Selten R . Reexamination of the perfectness concept for equilibrium points in extensive game[J]. International Journal of Game Theory, 1975, 4, 25- 55. |
| 8 | Myerson R . Refinements of the Nash equilibrium concept[J]. International Journal of Game Theory, 1978, 7, 73- 80. |
| 9 | 仲崇轶. 群体博弈的有限理性问题及演化动力学研究[D]. 贵阳: 贵州大学, 2020. |
| 10 | Wu W T , Jiang J H . Essential equilibrium points of n-person noncoopertive games[J]. Scientia Sinica, 1962, 11, 1307- 1322. |
| 11 | Jiang J H . Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games[J]. Scientia Sinica, 1963, 7, 951- 964. |
| 12 | Kohlberg E , Mertens J . On the strategic stability of equilibria[J]. Economitrica, 1986, 54, 1003- 1037. |
| 13 | 俞建. 对策论中的本质平衡[J]. 应用数学学报, 1993, 16, 153- 157. |
| 14 | Yu J . Essential equilibria of n-person noncoopertive games[J]. Journal of Mathematical Economics, 1999, 31, 361- 372. |
| 15 | Yu J , Xiang S W . Essential components of equilibria of n-person noncoopertive games[J]. Nonlinear Analysis: TMA, 1999, 38, 259- 264. |
| 16 | 俞建. Nash平衡的存在性与稳定性[J]. 系统科学与数学, 2002, 22, 296- 311. |
| 17 | Yang H , Yu J . On essential components of the set of weakly Pareto-Nash equilibrium points[J]. Applied Mathematics Letters, 2002, 15, 553- 560. |
| 18 | Yu J , Yang H , Xiang S W . Unified approach to existence and stability of essential components[J]. Nonlinear Analysis: TMA, 2005, 63, e2415- e2425. |
| 19 | 俞建. 博弈论与非线性分析[M]. 北京: 科学出版社, 2008. |
| 20 | Yang Z , Zhang H Q . Essential stability of cooperative equilibria for population games[J]. Optimization Letters, 2019, 13, 1573- 1582. |
| 21 | 张海群. 种群博弈中合作均衡的存在性与稳定性研究[D]. 上海: 上海财经大学, 2020. |
| 22 | 张海群. 有限理性与一类群体博弈弱有效Nash均衡的稳定性[J]. 数学物理学报, A辑, 2023, 4, 432- 447. |
| 23 | Kajii A . A generalization of Scarf's theorem: An α-core existence theorem without transitivity or completeness[J]. Journal of Economic Theory, 1992, 56, 194- 205. |
| 24 | 张弦. 多主从群体博弈中合作均衡的存在性[J]. 应用数学学报, 2022, 2, 197- 211. |
| 25 | 武文俊, 杨光惠, 房才雅, 等. 主从群体博弈合作均衡的通有稳定性[J]. 数学物理学报, A辑, 2023, 43, 921- 929. |
| 26 | Yang G H , Yang H . Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games[J]. Set-Valued and Variational Analysis, 2017, 25, 427- 439. |
| 27 | Yang G H , Yang H , Song Q Q . Stability of weighted Nash equilibria for multiobjective population games[J]. Journal of Nonlinear Science and Applications, 2016, 9 (3): 4167- 4176. |
| 28 | 杨光惠. 多目标群体博弈平衡的精炼[D]. 贵阳: 贵州大学, 2017. |
| 29 | 赵薇, 杨辉, 吴隽永. 不确定参数下群体博弈均衡的存在性与通有稳定性[J]. 应用数学学报, 2020, 43 (4): 627- 638. |
| 30 | 王明婷, 杨光惠, 杨辉. 有限理性下不确定性群体博弈弱NS平衡的稳定性[J]. 数学物理学报, A辑, 2022, 6, 1812- 1825. |
| 31 | Wang G , Liu Z , Yang H , et al. Existence of equilibrium solutions for multi-objective population games with fuzzy parameters[J]. Fuzzy Sets and Systems, 2023, 473, 108698. |
| 32 | Maynard Smith J , Price R . The logic of animal conflict[J]. Nature, 1973, 246, 15- 18. |
| 33 | Pi J X , Yang G H , Yang H . Evolutionary dynamics of cooperation in N-person snowdrift games with peer punishment and individual disguise[J]. Physica A: Statistical Mechanics and its Applications, 2022, 592, 126839. |
| 34 | Pi J X , Yang G H , Tang W , et al. Stochastically stable equilibria for evolutionary snowdrift games with time costs[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 604, 127927. |
| 35 | Bi Y , Yang H . Based on reputation consistent strategy times promotes cooperation in spatial prisoner's dilemma game[J]. Applied Mathematics and Computation, 2023, 444, 127818. |
| 36 | Bi Y , Yang H . Heterogeneity of strategy persistence promotes cooperation in spatial prisoner's dilemma game[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 624, 128939. |
| 37 | Bi Y , Yang H . Heterogeneous reputation promotes cooperation in spatial public goods game[J]. Physics Letters A, 2023, 488, 129149. |
| 38 | Zhou D , Pi J X , Yang G H , et al. Nonlinear dynamics of a heterogeneous quantum Commons' tragedy[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 608, 128231. |
| 39 | Zhou D , Yang H , Pi J X , et al. The dynamics of a quantum Cournot duopoly with asymmetric information and heterogeneous players[J]. Physics Letters A, 2023, 192033. |
| 40 | Larbani M . Non-cooperative fuzzy games in normal form: A survey[J]. Fuzzy Sets and Systems, 2009, 160 (22): 3184- 3210. |
| 41 | Liu B D . Uncertainty Theory[M]. New York: Springer, 2010. |
| 42 | 袁先智. 共识博弈与区块链生态共识均衡[J]. 运筹学学报(中英文), 2024, 28 (3): 1- 26. |
/
| 〈 |
|
〉 |