Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (2): 158-174.doi: 10.15960/j.cnki.issn.1007-6093.2025.02.012
• Research Article • Previous Articles Next Articles
Yuru ZHANG1, Xue ZHANG1,*(
), Ru LAN1
Received:2022-04-27
Online:2025-06-15
Published:2025-06-12
Contact:
Xue ZHANG
E-mail:zhangxue2100442@163.com
CLC Number:
Yuru ZHANG, Xue ZHANG, Ru LAN. A variable metric extrapolation hard threshold algorithm for some linear inverse problem[J]. Operations Research Transactions, 2025, 29(2): 158-174.
"
| tol | |||
| 1 | 4.043 0/6/0.020 6/1 | 5.363 0/8/0.020 6/1 | 6.043 0/9/0.020 6/1 |
| 2 | 4.700 0/7/0.020 6/1 | 5.361 0/8/0.020 6/1 | 6.046 0/9/0.020 6/1 |
| 3 | 3.931 0/6/0.020 6/1 | 5.349 0/8/0.020 6/1 | 6.041 0/9/0.020 6/1 |
| 4 | 4.637 0/7/0.020 6/1 | 5.374 0/8/0.020 6/1 | 6.777 0/10/0.020 6/1 |
| 5 | 4.657 0/7/0.020 6/1 | 5.362 0/8/0.020 6/1 | 6.769 0/10/0.020 6/1 |
| 10 | 4.667 0/7/0.020 6/1 | 6.088 0/8/0.020 6/1 | 6.791 0/10/0.020 6/1 |
| 15 | 4.650 0/7/0.020 6/1 | 6.109 0/8/0.020 6/1 | 6.782 0/10/0.020 6/1 |
| 20 | 4.634 0/7/0.020 6/1 | 6.052 0/8/0.020 6/1 | 6.842 0/10/0.020 6/1 |
"
| 100 | 200 | 250 | 500 | |
| 1 | 4.344 0/5/0.021 4/1 | 4.511 0/5/0.021 4/1 | 4.809 0/5/0.021 4/1 | 6.623 0/5/0.021 4/1 |
| 2 | 4.166 0/5/0.021 4/1 | 4.582 0/5/0.021 4/1 | 4.800 0/5/0.021 4/1 | 6.010 0/5/0.021 4/1 |
| 3 | 4.021 0/5/0.021 4/1 | 4.514 0/5/0.021 4/1 | 4.726 0/5/0.021 4/1 | 6.062 0/5/0.021 4/1 |
| 4 | 4.112 0/5/0.021 4/1 | 4.486 0/5/0.021 4/1 | 4.713 0/5/0.021 4/1 | 6.129 0/5/0.021 4/1 |
| 5 | 4.194 0/5/0.021 4/1 | 4.515 0/5/0.021 4/1 | 4.785 0/5/0.021 4/1 | 5.853 0/5/0.021 4/1 |
| 10 | 4.116 0/5/0.021 4/1 | 4.513 0/5/0.021 4/1 | 4.783 0/5/0.021 4/1 | 5.897 0/5/0.021 4/1 |
| 15 | 4.076 0/5/0.021 4/1 | 4.597 0/5/0.021 4/1 | 4.695 0/5/0.021 4/1 | 5.864 0/5/0.021 4/1 |
| 20 | 4.078 0/5/0.021 4/1 | 4.658 0/5/0.021 4/1 | 4.824 0/5/0.021 4/1 | 5.942 0/5/0.021 4/1 |
"
| 100 | 200 | 250 | 500 | |
| 1 | 5.029 0/6/0.020 6/1 | 5.391 0/6/0.020 6/1 | 5.425 0/6/0.020 6/1 | 6.988 0/6/0.020 6/1 |
| 2 | 5.001 0/6/0.020 6/1 | 5.394 0/6/0.020 6/1 | 5.501 0/6/0.020 6/1 | 7.027 0/6/0.020 6/1 |
| 3 | 4.853 0/6/0.020 6/1 | 5.464 0/6/0.020 6/1 | 5.594 0/6/0.020 6/1 | 6.994 0/6/0.020 6/1 |
| 4 | 4.877 0/6/0.020 6/1 | 5.559 0/6/0.020 6/1 | 5.517 0/6/0.020 6/1 | 7.012 0/6/0.020 6/1 |
| 5 | 4.983 0/6/0.020 6/1 | 5.576 0/6/0.020 6/1 | 5.558 0/6/0.020 6/1 | 7.072 0/6/0.020 6/1 |
| 10 | 4.938 0/6/0.020 6/1 | 5.496 0/6/0.020 6/1 | 5.658 0/6/0.020 6/1 | 7.070 0/6/0.020 6/1 |
| 15 | 4.962 0/6/0.020 6/1 | 5.414 0/6/0.020 6/1 | 5.757 0/6/0.020 6/1 | 7.001 0/6/0.020 6/1 |
| 20 | 4.978 0/6/0.020 6/1 | 5.424 0/6/0.020 6/1 | 5.719 0/6/0.020 6/1 | 6.982 0/6/0.020 6/1 |
"
| 100 | 200 | 250 | 500 | |
| 1 | 5.500 0/7/0.019 6/1 | 5.949 0/7/0.019 6/1 | 6.320 0/7/0.019 6/1 | 7.955 0/7/0.019 6/1 |
| 2 | 5.483 0/7/0.019 6/1 | 5.999 0/7/0.019 6/1 | 6.461 0/7/0.019 6/1 | 8.074 0/7/0.019 6/1 |
| 3 | 5.616 0/7/0.019 6/1 | 5.944 0/7/0.019 6/1 | 6.399 0/7/0.019 6/1 | 7.980 0/7/0.019 6/1 |
| 4 | 5.587 0/7/0.019 6/1 | 5.936 0/7/0.019 6/1 | 6.680 0/7/0.019 6/1 | 8.124 0/7/0.019 6/1 |
| 5 | 5.596 0/7/0.019 6/1 | 5.920 0/7/0.019 6/1 | 6.375 0/7/0.019 6/1 | 8.295 0/7/0.019 6/1 |
| 10 | 5.558 0/7/0.019 6/1 | 5.913 0/7/0.019 6/1 | 6.504 0/7/0.019 6/1 | 8.054 0/7/0.019 6/1 |
| 15 | 5.529 0/7/0.019 6/1 | 5.936 0/7/0.019 6/1 | 6.527 0/7/0.019 6/1 | 8.137 0/7/0.019 6/1 |
| 20 | 5.586 0/7/0.019 6/1 | 5.980 0/7/0.019 6/1 | 6.499 0/7/0.019 6/1 | 8.255 0/7/0.019 6/1 |
| 1 |
Zhang Y , Dong B , Lu Z S . $\ell_0$ minimization for wavelet frame based image restoration[J]. Mathematics of Computation, 2012, 82 (282): 995- 1015.
doi: 10.1090/S0025-5718-2012-02631-7 |
| 2 |
He L T , Wang Y L , Xiang Z Y . Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients[J]. The Visual Computer, 2019, 35 (2): 151- 174.
doi: 10.1007/s00371-017-1440-3 |
| 3 | 柳宁, 赵焕明, 李德平, 等. 基于$\ell_0$稀疏先验的运动模糊标签图像盲复原[J]. 华南理工大学学报(自然科学版), 2021, 49 (3): 8- 16. |
| 4 | 张晶, 乌彩英. 基于$\ell_1$-$\ell_0$模型的信号重构算法[J]. 内蒙古大学学报(自然科学版), 2020, 51 (6): 593- 599. |
| 5 | 张秀再, 赵慧. 改进的自适应混合优化平滑$\ell_0$重构算法[J]. 海军工程大学学报, 2020, 32 (4): 6- 12. |
| 6 | 刘光宇, 袁权, 张令威, 等. 基于卷积谱与$\ell_0$正则化的图像盲去模糊[J]. 计算机工程与设计, 2020, 41 (6): 1658- 1662. |
| 7 | 李响, 蒋敏, 彭钰蘅, 等. 编码曝光图像的$\ell_0$正则化去模糊重建方法[J]. 数据采集与处理, 2020, 35 (1): 65- 78. |
| 8 | Gong M G , Liu J , Li H , et al. A multiobjective sparse feature learning model for deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 26 (12): 3263- 3277. |
| 9 | Wang C X , Zeng L , Zhang L L , et al. An adaptive iteration reconstruction method for limited-angle CT image reconstruction[J]. Journal of Inverse and Ill-posed Problems, 2018, 26 (6): 771- 787. |
| 10 | Lu X Q , Wang Y L , Yuan Y . Sparse coding from a bayesian perspective[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24 (6): 929- 939. |
| 11 | Kiefer L , Storath M , Weinmann A . Iterative potts minimization for the recovery of signals with discontinuities from indirect measurements: The multivariate case[J]. Foundations of Computational Mathematics, 2021, 21 (3): 649- 694. |
| 12 | 李庆龙, 曾雪迎. 一类信号恢复问题的投影迭代硬阈值算法[J]. 中国海洋大学学报(自然科学版), 2022, 52 (2): 129- 134. |
| 13 | Chen J X, Zhang M M, Li Y. A reconstruction algorithm for electrical capacitance tomography via total variation and $\ell_0$-norm regularizations using experimental data [EB/OL]. [2022-04-26]. arXiv: 1711.02544. |
| 14 | Lions P L , Mercier B . Splitting algorithms for the sum of two nonlinear operators[J]. SIAM Journal on Numerical Analysis, 1979, 16 (6): 964- 979. |
| 15 | Passty G . Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[J]. Journal of Mathematical Analysis and Applications, 1979, 72 (2): 383- 390. |
| 16 | Attouch H , Bolte J , Svaiter B F . Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Mathematical Programming, 2013, 137 (1-2): 91- 129. |
| 17 | Lu Z S . Iterative hard thresholding methods for $\ell_0$ regularized convex cone programming[J]. Mathematical Programming, 2013, 147 (1-2): 125- 154. |
| 18 | Bot R I , Csetnek E R , László S C . An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions[J]. EURO Journal on Computational Optimization, 2016, 4 (1): 3- 25. |
| 19 | Li H , Lin Z C . Accelerated proximal gradient methods for nonconvex programming[J]. In Advances in Neural Information Processing Systems (NIPS), 2015, 28 |
| 20 | Yao Q M, Kwok J T, Gao F, et al. Efficient inexact proximal gradient algorithm for nonconvex problems [C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligenc, 2017. |
| 21 | Bao C L , Dong B , Hou L K , et al. Image restoration by minimizing zero norm of wavelet frame coefficients[J]. Inverse Problems, 2016, 32 (11): 115004. |
| 22 | Zhang X , Zhang X Q . A new proximal iterative hard thresholding method with extrapolation for $\ell_0$ minimization[J]. Journal of Scientific Computing, 2019, 79 (2): 809- 826. |
| 23 | Attouch H , Peypouquet J . The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $o(k^{-2})$[J]. SIAM Journal on Optimization, 2016, 26 (3): 1824- 1834. |
| 24 | Frankel P , Garrigos G , Peypouquet J . Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates[J]. Journal of Optimization Theory and Applications, 2015, 165 (3): 874- 900. |
| 25 | Chouzenoux E , Pesquet J C , Repetti A . A block coordinate variable metric forward-backward algorithm[J]. Journal of Global Optimization, 2016, 66 (3): 457- 485. |
| 26 | Ochs P . Unifying abstract inexact convergence theorems and block coordinate variable metric iPiano[J]. SIAM Journal on Optimization, 2019, 29 (1): 541- 570. |
| 27 | Bonettini S , Zanella R , Zanni L . A scaled gradient projection method for constrained image deblurring[J]. Inverse Problems, 2009, 25 |
| 28 | Bonettini S , Prato M . New convergence results for the scaled gradient projection method[J]. Inverse Problems, 2015, 31 (9): 095008. |
| 29 | Porta F , Prato M , Zanni L . A new steplength selection for scaled gradient methods with application to image deblurring[J]. Journal of Scientific Computing, 2015, 65 (3): 895- 919. |
| 30 | Zhang X, Zhang X Q. Variable metric extrapolation proximal iterative hard thresholding method for $\ell_0 $ minimization problem [EB/OL]. [2022-04-26]. arXiv: 2108.03365. |
| 31 | Beck A , Teboulle M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2 (1): 183- 202. |
| 32 | Nocedal J , Wright S J . Numerical Optimization[M]. New York: Springer, 1999. |
| 33 | Zhang X , Zhang X Q . A note on the complexity of proximal iterative hard thresholding algorithm[J]. Journal of the Operations Research Society of China, 2015, 3 (4): 459- 473. |
| 34 | 王宜举, 修乃华. 非线性最优化理论与方法(第2版)[M]. 北京: 科学出版社, 2016. |
| [1] | Xianzhi YUAN. Consensus game and consensus equilibrium in blockchain ecology [J]. Operations Research Transactions, 2024, 28(3): 1-26. |
| [2] | Hongyin CHEN, Yukun CHENG, Xiaotie DENG, Zhanghao YAO. Auction in blockchain: Applications and challenges [J]. Operations Research Transactions, 2023, 27(1): 1-29. |
| [3] | Jiahao LYU, Honglin LUO, Zehua YANG, Jianwen PENG. A stochastic Bregman ADMM with its application in training sparse structure SVMs [J]. Operations Research Transactions, 2022, 26(2): 16-30. |
| [4] | Jia HU, Tiande GUO, Congying HAN. Mini-batch stochastic block coordinate descent algorithm [J]. Operations Research Transactions, 2022, 26(1): 1-22. |
| [5] | LIU Mingxi, GAN Guohua, CHENG Yukun, XIAO Lin, LIU Shuai, FANG Yong. Development and prospect of blockchain consensus mechanism [J]. Operations Research Transactions, 2020, 24(1): 23-39. |
| [6] | CHEN Caihua. Some notes on the divergence example for multi-block alternating direction method of multipliers [J]. Operations Research Transactions, 2019, 23(3): 135-140. |
| [7] | JIAN Jinbao, LAO Yixian, CHAO Miantao, MA Guodong. ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization [J]. Operations Research Transactions, 2018, 22(2): 79-92. |
| [8] | CHEN Jian, SU Kaixiong, PENG Zheng, SU Lichao. Measurement method of block compressed sensing based on partial trigonometric function transform matrices [J]. Operations Research Transactions, 2015, 19(4): 59-71. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||