1 |
王建建, 何枫, 吴子轩, 等. 改进区间可接受度的证券投资组合区间二次规划模型[J]. 中国管理科学, 2018, 26 (9): 11- 18.
|
2 |
唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34 (10): 2069- 2078.
|
3 |
刘耘臻, 万志强, 杨超. 飞行载荷外部气动力的二次规划等效映射方法[J]. 北京航空航天大学学报, 2020, 46 (3): 541- 547.
|
4 |
王冠宇, 丁亮, 高海波, 等. 增强爬坡能力的六足机器人分步二次规划足力分配算法及试验验证[J]. 机械工程学报, 2019, 55 (21): 11- 20.
|
5 |
Li X , Zhang M . Interior-point algorithm for linear optimization based on a new trigonometric kernel function[J]. Operations Research Letters, 2015, 43 (5): 471- 475.
doi: 10.1016/j.orl.2015.06.013
|
6 |
冯江华, 王斌, 胡云卿, 等. 地铁列车运行过程的线性二次型最优建模及内点算法求解[J]. 控制与信息技术, 2018, (1): 1- 6.
|
7 |
张思颖. 凸二次规划SDP松弛解的存在性证明[J]. 重庆工商大学学报(自然科学版), 2020, 37 (3): 66- 69.
doi: 10.16055/j.issn.1672-058X.2020.0003.010
|
8 |
刘颖, 赵迪. 求解凸二次规划的主对偶积极集法[J]. 哈尔滨师范大学(自然科学版), 2011, 27 (2): 40- 43.
|
9 |
赵营峰, 刘三阳, 葛立. 求解不定二次约束二次规划问题的全局优化算法[J]. 工程数学学报, 2018, 35 (4): 367- 374.
|
10 |
Wang J . Recurrent neural networks for solving linear matrix equations[J]. Computers and Mathematics with Applications, 1993, 26 (9): 23- 34.
doi: 10.1016/0898-1221(93)90003-E
|
11 |
Wang J . A recurrent neural network for real-time matrix inversion[J]. Applied Mathematics and Computation, 1993, 55, 89- 100.
doi: 10.1016/0096-3003(93)90007-2
|
12 |
Zhang Y , Jiang D , Wang J . A recurrent neural network for solving Sylvester equation with time-varying coefficients[J]. IEEE Trans Neural Netw, 2002, 13 (5): 1053- 1063.
doi: 10.1109/TNN.2002.1031938
|
13 |
Zhang Y , Wang J . Recurrent neural networks for nonlinear output regulation[J]. Automatica, 2001, 37 (8): 1161- 1173.
doi: 10.1016/S0005-1098(01)00092-9
|
14 |
Zhang Y , Chen K , Tan H Z . Performance analysis of gradient neural network exploited for online time-varying matrix inversion[J]. IEEE Transactions on Automatic Control, 2009, 54, 1940- 1945.
doi: 10.1109/TAC.2009.2023779
|
15 |
Guo D , Zhang Y . Zhang neural network, Getz-Marsden dynamic system, and discrete-time algorithms for time-varying matrix inversion with application to robots' kinematic control[J]. Neurocomputing, 2012, 97, 22- 32.
doi: 10.1016/j.neucom.2012.05.012
|
16 |
Xiao L , Tan H , Jia L , et al. New error function designs for finite-time ZNN models with application to dynamic matrix inversion[J]. Neurocomputing, 2020, 402, 395- 408.
doi: 10.1016/j.neucom.2020.02.121
|
17 |
Zhang Y , Ge S S . Design and analysis of a general recurrent neural network model for time-varying matrix inversion[J]. IEEE Transactions on Neural Networks, 2005, 16 (6): 1477- 1490.
doi: 10.1109/TNN.2005.857946
|
18 |
Zhang Y , Yi C , Ma W . Simulation and verification of Zhang neural network for online time-varying matrix inversion[J]. Simulation Modelling Practice and Theory, 2009, 17 (10): 1603- 1617.
doi: 10.1016/j.simpat.2009.07.001
|
19 |
Li S , Chen S , Liu B . Accelerating a recurrent neural network to finite-time convergence for solving time-varying sylvester equation by using a Sign-bi-power activation function[J]. Neural Processing Letters, 2013, 37 (2): 189- 205.
doi: 10.1007/s11063-012-9241-1
|
20 |
Xiao L , Liao B . A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation[J]. Neurocomputing, 2016, 193, 213- 218.
doi: 10.1016/j.neucom.2016.02.021
|
21 |
Xiao L , Liao B , Shuai L , et al. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations[J]. Neural Networks, 2018, 98, 102- 113.
doi: 10.1016/j.neunet.2017.11.011
|
22 |
Lv X , Xiao L , Tan Z . Improved Zhang neural network with finite-time convergence for time-varying linear system of equations solving[J]. Information Processing Letters, 2019, 147, 88- 93.
doi: 10.1016/j.ipl.2019.03.012
|
23 |
Wang X , Liang L , Che M . Finite-time convergent complex-valued neural networks for the time-varying complex linear matrix equations[J]. Engineering Letters, 2018, 26 (4): 432- 440.
|
24 |
Zhang Z , Zheng L , Wang M . An exponential-enhanced-type varying parameter RNN for solving time-varying matrix inversion[J]. Neurocomputing, 2019, 338, 126- 138.
doi: 10.1016/j.neucom.2019.01.058
|
25 |
Zhang Y , Li Z . Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints[J]. Physics Letters A, 2009, 373, 18- 19.
|
26 |
Qin S , Feng J , Song J , et al. A one-layer recurrent neural network for constrained complex-variable convex optimization[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29 (3): 534- 544.
|
27 |
Jin L , Li S . Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints[J]. Neurocomputing, 2017, 267, 107- 113.
|
28 |
Jiang D , Wang J . A recurrent neural network for real-time semidefinite programming[J]. Applied Mathematics and Computation, 1993, 55 (1): 89- 100.
|
29 |
Ma Q , Qin S , Jin T . Complex Zhang neural networks for complex-variable dynamic quadratic programming[J]. Neurocomputing, 2019, 330, 56- 69.
|
30 |
Huang X , Lou X , Cui B . A novel neural network for solving convex quadratic programming problems subject to equality and inequality constraints[J]. Neurocomputing, 2016, 214, 23- 31.
|
31 |
Effati S , Ranjbar M . A novel recurrent nonlinear neural network for solving quadratic programming problems[J]. Applied Mathematical Modelling, 2011, 35 (4): 1688- 1695.
|
32 |
杨静俐, 吴艺团, 陈锦奎. 求解凸二次规划的连续型神经网络模型[J]. 梧州学院学报, 2018, 28 (3): 15- 21.
|
33 |
肖林, 严慧玲, 周文辉. 求解二次规划问题的快速收敛梯度神经网络模型设计及仿真[J]. 湖南文理学院学报(自然科学版), 2016, 28 (1): 51- 54+59.
|
34 |
Wa ng , J . Recurrent neural network for solving quadratic programming problems with equality constraints[J]. Electronics Letters, 1992, 28 (14): 1345- 1347.
|
35 |
袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社, 2007.
|
36 |
郭田德, 韩丛英. 从数值最优化方法到学习最优化方法[J]. 运筹学学报, 2019, 23 (4): 1- 12.
|
37 |
戎卫东, 马毅. 集值映射向量优化问题的$ \varepsilon$-真有效解(英文)[J]. 运筹学学报, 2000, 4 (4): 21- 32.
|
38 |
杨新民, 赵克全. 向量优化问题的近似解研究[J]. 运筹学学报, 2017, 21 (4): 1- 18.
|
39 |
戴彧虹, 刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报, 2014, 18 (1): 69- 92.
|
40 |
李浙宁, 凌晨, 王宜举, 等. 张量分析和多项式优化的若干进展[J]. 运筹学学报, 2014, 18 (1): 134- 148.
|