[1] Cvetković D, Doob M, Sachs H. Spectra of Graphs: Theorey and Application[M]. New York: Academic Press, 1980: 218. [2] Tutte W T. Codichromatic graphs[J]. Journal of Combinatorial Theory, Series B, 1974, 16: 168-174. [3] Jacobsen J L, Salas J, Sokal A D. Spanning forests and the q-state Potts model in the limit q → 0[J]. Journal of Statistical Physics, 2005, 115: 1153-1281. [4] Colbourn C J. The Combinatorics of Network Reliability[M]. Oxford: Oxford University Press, 1987. [5] Beosch F T. On unreliability polynomials and graph connectivity in reliable network synthesis [J]. Journal of Graph Theory, 1986, 3: 339-352. [6] Macdonald P J, Almaas E, Barabási A L. Minimum spanning trees of weighted scale-free networks[J]. Europhysics Letters, 2005, 72: 308-314. [7] Teufl E, Wagner S. Determinant identities for Laplace matrices[J]. Linear Algebra and Its Applications, 2010, 432: 441-457. [8] Marchal P. Loop-erased random walks, spanning trees and hamiltonian cycles[J]. Electronic Communications in Probability, 2000, 5: 39-50. [9] Dhar D, Dhar A. Distribution of sizes of erased loops for loop-erased random walks[J]. Physical Review E, 1997, 55: R2093-R2096. [10] Teufl E, Wagner S. Resistance scaling and the number of spanning trees in self-similar lattices [J]. Journal of Statistical Physics, 2011, 142: 879-897. [11] Kirchhoff G. Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird[J]. Annual Review of Physical Chemistry, 1847, 72: 497-508. [12] Lyons R. Asymptotic enumeration of spanning trees[J]. Combinatorics Probability & Computing, 2005, 14: 491-522. [13] Qin S, Zhang J Y, Chen X, et al. Enumeration of spanning trees on contact graphs of disk packings[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 433: 1-8. [14] Shrock R, Wu F. Spanning trees on graphs and lattices in d dimensions[J]. Journal of Physics A: General Physics, 2000, 33: 3881-3902. [15] Yan W G. Enumeration of spanning trees of graphs with rotational symmetry[J]. Journal of Combinatorial Theory, Series A, 2011, 118: 1270-1290. [16] Zhang Y P, Yong X R, Golin M J. Chebyshev polynomials and spanning tree formulas for circulant and related graphs[J]. Discrete Mathematics, 2005, 298: 334-364. [17] Song C M, Havlin S, Makse H A. Self-similarity of complex networks[J]. Nature, 2005, 433: 392-395. [18] Chang S C, Chen L C, Yang W S. Spanning trees on the Sierpiński gasket[J]. Journal of Statistical Physics, 2007, 126: 649-667. [19] William A, Rajasingh I, Rajan B, et al. Topological properties of Sierpiński gasket pyramid network[C]//Proceeding of Informatics Engineering and Information Science, Kuala Lumpur: Springer, 2011: 431-439. [20] Zhang Z Z, Wu B, Comellas F. The number of spanning trees in apollonian networks[J]. Discrete Applied Mathematics, 2014, 169: 206-213. [21] Gong H L, Jin X A. A general method for computing Tutte polynomials of self-similar graphs [J]. Physica A: Statistical Mechanics and Its Applications, 2017, 83: 117-129. [22] Zhang Z Z, Liu H X, Wu B, et al. Enumeration of spanning trees in a pseudofractal scale-free web[J]. Europhysics Letters, 2010, 90: 68002. |