Blackwell O. An analogy of minimax theorem for vector payoffs [J]. Pacific Journal of Mathematics, 1956, 6: 1-8.
Shapley L S. Equilibrium points in games with vector payoffs [J]. Naval Research Logistics Quarterly, 1959, 6: 57-61.
Yang H, Yu J. Essential components of the set of weakly Pareto-Nash equilibrium points [J]. Applied Mathematics Letters, 2002, 15: 553-560.
Blackwell O. An analogy of minimax theorem for vector payoffs [J]. Pacific Journal of Mathematics, 1956, 6: 1-8.
杨辉, 俞建. 向量拟平衡问题的本质解及解集的本质连通区[J]. 系统科学与数学, 2004, 24: 74-84.
Wang S Y. Existence of a Pareto-equilibrium [J]. Journal of Optimization Theory and Applications, 1993, 2: 373-384.
Morgan J. Approximations and well-posedness in multicriteria games [J]. Annals of Operations Research, 2005, 37: 257-268.
Lin Z, Yu J. On well-posedness of the multiobjective generalized game [J]. Appl. Math. J. Chinese Univ. Ser. B, 2004, 19: 327-334.
Yu C, Yu J. Bounded rationality in multiobjective games [J]. Nonlinear Analysis TMA, 2007, 67: 930-937.
Ding X P. Nonempty intersection theorems and generalized multi-objective games in product FC-Spaces [J]. J. Glob. Optim, 2007, 37: 63-73.
Yuan X Z, Tarafdar E. Non-compact Pareto-equilibria for multiobjective games [J]. J. Math. Anal. Appl, 1996, 204: 156-163.
Puerto J, Infante R, Fernandez F R. A refinement of the concept of equilibrium in multiple objective continuous games [J]. Rev. R. Acad. Cienc. Exact. Fis. Nat., 1999, 93: 457-462.
Klein E, Thompson A C. Theory of Correspondence [M]. Wiley, New York, 1984.
Yu J. Essential equilibria of n-person noncooperative games [J]. J. Math. Econ., 1999, 31: 361-372.
俞建. 博弈论与非线性分析续论[J]. 北京: 科学出版社, 2011.
Aliprantis C D, Border K C. Infinite Dimensional Analysis [M]. Heidelberg: Springer-Verlag, 1999.
Xiang S W, Liu G D, Zhou Y H. On the strongly essential components of Nash equilibria of infinite n-person games with quasiconcave payoffs [J].Nonlinear Analysis TMA, 2005, 63: 2639-2647.
Blackwell O. An analogy of minimax theorem for vector payoffs [J]. Pacific Journal of Mathematics, 1956, 6: 1-8.
杨哲, 蒲勇健. 广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区[J]. 系统科学与数学, 2011, 31: 1613-1621.
杨哲. 非合作博弈在行为经济学思想下的均衡研究[D]. 重庆: 重庆大学, 2012.
|