Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Contraints [M]. Cambridge: Cambridge University Press, 1996. Outrata J, Kocvara M, Zowe J. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results [M]. New York: Kluwer Academic Publisher, 1998. Fukushima M, Lin G H. Smoothing methods for mathematical programs with equilibrium constraints [J]. Proceedings of Informatics Research for Development of Knowledge Society Infrastructure, 2004, 206-213. Chen Y, Florian M. The nonlinear bilevel programming problem: formulations, regularity and optimality conditions [J]. Optimization, 1995, 32: 193-209. Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2001, 11: 918-936. Lin G H, Fukushima M. A modified relaxation scheme for mathematical programs with complementarity constraints [J]. Annals of Operations Research, 2005, 133: 63-84. Kadrani A, Dussault J P, Benchakroun A. A new regularization scheme for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2009, 20: 78-103. Fukushima M, Pang J S. Convergence of a smoothing continuation method for mathematical programs with complementarity constraints, Ill-posed variational problems and regularition techniques [J]. Lecture Notes in Economics and Mathematical Systems, 1999, 477: 105-116. Facchinei F, Jiang H, Qi L. A smoothing method for mathematical programs with equilibrium constraints [J]. Mathematical Programming, 1999, 85: 107-134. Hu X M, Ralph D. Convergence of a penalty method for mathematical programs with complementarity constraints [J]. Journal of Optimization Theory and Applications, 2004, 123: 365-390. Huang X X, Yang X Q, Zhu D L. A sequential smooth penalization approach to mathematical programs with complementarity constraints [J]. Numerical Functional Analysis and Optimization, 2006, 27: 71-98. Luo Z Q, Pang J S, Ralph D. Piece-wise sequential quadratic programming for mathematical programs with nonlinear complementarity constraints [M]//Complementarity and Variational Problems: State of the Art. Philadelphia: SIAM Publications, 1997. Liu G S, Ye J J. Merit function piecewise SQP algorithm for mathematical programs with equilibrium constraints [J]. Journal of Optimization Theory and Applications, 2007, 135: 623-641. Benson H Y, Sen A, Shanno D F, et al. Interior-point algorithm, penalty methods and equilibrium problems [J]. Computational Optimization and Applications, 2005, 34: 155-182. Arvind U, Lorenz T. An interior point method for mathematical programs with complementarity constraints [J]. SIAM Journal on Optimization, 2005, 15: 720-750. 乌力吉, 陈国庆. 线性互补问题的一种新~Lagrange 乘子法 [J]. 高等学校计算数学学报, 2004, 26: 162-171. 乌力吉, 陈国庆. 线性互补问题的一类新的带参数价值函数的阻尼牛顿法 [J]. 应用数学, 2005, 18: 33-39.Pang J S, Fukushima M. Complementarity constraint qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints [J]. Computational Optimization and Applications, 1999, 13: 111-136. Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity [J]. Mathematics of Operations Research, 2000, 25: 1-21. Pang J S, Fukushima M. Complementarity constraint qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints [J]. Computational Optimization and Applications, 1999, 13: 111-136. Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity [J]. Mathematics of Operations Research, 2000, 25: 1-21. Ye J J. Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints [J]. Journal of Mathematical Analysis and Applications, 2005, 307: 305-369. |