The M/M/1 queue with controlled multiple vacations under Bernoulli policy
ZHANG Hongbo1,2,*
1. School of Mathematics, Central South University, Changsha 410075, China
2. Department of Mathematics, Henan Institute of Education, Zhengzhou 450046, China
Doshi B T. Queueing systems with vacations-a survey [J]. Queueing Systems, 1986, 1(1): 29-66. Tian N S, Zhang G Z. Vacation queueing models-theory and applications [M]. New York: Springer, 2006. Keilson J, Servi L D. Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules [J]. Journal of Applied Probability, 1986, 23(3): 790-802. Servi L D, Finn S G. M/M/1 queues with working vacations (M/M/1/WV) [J]. Performance Evaluation, 2002, 50(1): 41-52. Liu W Y, Xu X L, Tian N S. Stochastic decompositions in the M/M/1 queue with working vacations [J]. Operations Research Letters, 2007, 35(5): 595-600. Tian N S, Li J H, Zhang Z G. Matrix analytic method and working vacation queues---a survey [J]. International Journal of Information and Management Sciences, 2009, 20(4): 603-633. Neuts M F. Matrix-geometric solutions in stochastic models: an algorithmic approach [M]. Baltimore: the Johns Hopkins University Press, 1981. Cooper R B. Introduction to queueing theory [M]. 2nd ed. North Holland: Elsevier North Holland, 1981. Alam S S, Acharya D, Rao V P. M/M/1 queue with server's vacations [J]. Asia-Pacific Journal of Operational Research, 1986, 3(1): 21-26. Keilson J, Servi L D. A distributional form of Little's law [J]. Operations Research Letters, 1988, 7(5): 223-227