Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach [J]. Journal of Financial Economics, 1979, 7(3): 229-263. Boyle P P. A lattice framework for option pricing with two state variables [J]. Journal of Financial and Quantitative Analysis, 1988, 23(1): 1-12. Omberg E. Efficient discrete time jump process models in option pricing [J]. Journal of Financial and Quantitative Analysis, 1988, 23(2): 161-174. Tian Y. A modified lattice approach to option pricing [J]. Journal of Futures Markets, 1993, 13(5): 563-577. Leisen D P J, Reimer M. Binomial models for option valuation - examining and improving convergence [J]. Applied Mathematical Finance, 1996, 3(4): 319-346. Heston S, Zhou G F. On the rate of convergence of discrete-time contingent claims [J]. Mathematical Finance, 2000, 10(1): 53-75. Walsh J B. The rate of convergence of the binomial tree scheme [J]. Finance and Stochastics, 2003, 7(3): 337-361. Diener F, Diener M. Asymptotics of the price oscillations of a European call option in a tree model [J]. Mathematical Finance, 2004, 14(2): 271-293. Joshi M S. Achieving higher order convergence for the prices of European options in binomial trees [J]. Mathematical Finance, 2010, 20(1): 89-103. Chang L B, Palmer K. Smooth convergence in the binomial model [J]. Finance and Stochastics, 2007, 11(1): 91-105. Xiao X Y. Improving speed of convergence for the prices of European options in binomial trees with even numbers of steps [J]. Applied Mathematics and Computation, 2010, 216(9): 2659-2670. Kullback S. Information theory and statistics [M]. New York, John Wiley, 1959. Frittelli M. The minimal entropy martingale measure and the valuation problem in incomplete markets [J]. Mathematical Finance, 2000, 10(1): 39-52. Tian Y. A flexible binomial option pricing model [J]. Journal of Futures Markets, 1999, 19(7): 817-843. |