Zangwill W I. Non-linear programming via penalty functions [J]. Manage Sci, 1967, 13: 344-358. Auslender A. Penalty and barrier methods: a unified framework [J]. Optim, 1999, 10: 211-230. Auslender A, Cominetti R, Haddou M. Asymptotic analysis for penalty and barrier methods in convex and linear programming [J]. Math Operations Res, 1997, 22: 43-62. Ben-Tal A, Teboulle M. A smoothing technique for non-differentiable optimazation problems [C]. Lecture Notes in Mathematics, Berlin, West-Germany: Springer Verlag, 1989, 1405: 1-11. Chen C, Mangasarian Q L. Smoothing methods for convex inequalities and linear complementary problems [J]. Math Programming, 1995, 71: 1-112. Chen C, Mangasarian Q L. A class of smoothing functions for non-linear and mixed complementary problems [J]. Comput Optim Appl, 1996, 5: 97-138. Pinar M, Zenios S. On smoothing exact penalty functions for convex constrained optimization [J]. SIAM J Optim, 1994, 4: 486-511. Zang I. A smoothing-out technique for min-max optimization [J]. Math Prog, 1980, 19: 61-77. Sun X L, Li D. Asymptotic strong duality for bounded integer programming: a logarithmic- exponential dual formulation [J]. Mathematics of Operations Research, 2000, 25(4): 625-644. Gonzaga C C, Castillo R A. A nonlinear programming algorithm based on non-coercive penalty function [J]. Math Programming (Ser. A), 2003, 96: 87-101. |