The second largest signless Laplacian spectral radius of uniform supertree with diameter
Guidong YU1,2,*(), Hui YUAN1, Xinyu XIE1
1. School of Mathematics and Physics, Anqing Normal University, Anqing 246133, Auhui, China 2. Department of Primary Education (Public Teaching Department), Hefei Preschool Education College, Hefei 230013, Auhui, China
Guidong YU, Hui YUAN, Xinyu XIE. The second largest signless Laplacian spectral radius of uniform supertree with diameter[J]. Operations Research Transactions, 2025, 29(4): 241-248.
Lim L H. Singular values and eigenvalues of tensors: A variational approach[C]//Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 129-132.
2
Qi L Q . Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40 (6): 1302- 1324.
doi: 10.1016/j.jsc.2005.05.007
3
Lim L H. Eigenvalues of tensors and some very basic spectral hypergraph theory[C]//Matrix Computations and Scientific Computing Seminar, 2008.
4
Xiao P , Wang L G , Lu Y . The maximum spectral radii of uniform supertrees with given degree sequences[J]. Linear Algebra and Its Applications, 2017, 523, 33- 45.
doi: 10.1016/j.laa.2017.02.018
5
Xiao P , Wang L G , Du Y F . The first two largest spectral radii of uniform supertrees with given diameter[J]. Linear Algebra and Its Applications, 2018, 536, 103- 119.
doi: 10.1016/j.laa.2017.09.009
6
Xiao P , Wang L G . The maximum spectral radius of uniform hypergraphs with given number of pendant edges[J]. Linear and Multilinear Algebra, 2019, 67 (7): 1392- 1403.
doi: 10.1080/03081087.2018.1453471
7
Duan C X , Wang L G , Xiao P . Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Frontiers of Mathematics in China, 2020, 15 (6): 1105- 1120.
doi: 10.1007/s11464-020-0879-0
8
Li H H , Shao J Y , Qi L Q . The extremal spectral radii of k-uniform supertrees[J]. Journal of Combinatorial Optimization, 2016, 32, 741- 764.
doi: 10.1007/s10878-015-9896-4