Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (4): 159-174.doi: 10.15960/j.cnki.issn.1007-6093.2025.04.013
• Research Article • Previous Articles Next Articles
Bo ZHANG1, Hongyu WANG2, Yuelin GAO1,*(
)
Received:2022-09-10
Online:2025-12-15
Published:2025-12-11
Contact:
Yuelin GAO
E-mail:gaoyuelin8@163.com
CLC Number:
Bo ZHANG, Hongyu WANG, Yuelin GAO. A D.C. relaxation based branch-and-bound algorithm for sum-of-linear-products programming problems[J]. Operations Research Transactions, 2025, 29(4): 159-174.
"
| 例 | 方法 | 最优解 | 最优值 | 迭代次数 | 时间/s |
| 1 | 文献[ | (0, 4) | 3 | 50 | 0.447 3 |
| 文献[ | (0, 4) | 3 | 4 | 0.044 3 | |
| DCRBBA | (0, 4) | 3 | 3 | 0.037 4 | |
| 2 | 文献[ | (2, 8) | 10 | 19 | 0.172 3 |
| 文献[ | (2, 8) | 10 | 17 | 0.094 4 | |
| DCRBBA | (2, 8) | 10 | 1 | 0.008 9 | |
| 3 | 文献[ | (0, 5) | -233 | 63 | 0.768 3 |
| 文献[ | (0, 5) | -233 | 7 | 0.051 2 | |
| DCRBBA | (0, 5) | -233 | 1 | 0.009 8 | |
| 4 | 文献[ | (0, 0) | 4 | 25 | 0.283 9 |
| 文献[ | (0, 0) | 4 | 1 | 0.019 5 | |
| DCRBBA | (0, 0) | 4 | 6 | 0.104 5 | |
| 5 | 文献[ | (1, 4) | -22 | 156 | 1.627 4 |
| 文献[ | (1, 4) | -22 | 1 | 0.008 1 | |
| DCRBBA | (1, 4) | -22 | 1 | 0.006 7 | |
| 6 | 文献[ | (0, 3) | -2.5 | 291 | 2.999 4 |
| 文献[ | (0, 3) | -2.5 | 18 | 0.110 7 | |
| DCRBBA | (0, 3) | -2.5 | 30 | 0.445 1 | |
| 7 | 文献[ | (1.316 9, 2.244 1) | 4.956 6 | 1 829 | 21.265 7 |
| 文献[ | (1.316 9, 2.244 1) | 4.956 6 | 14 | 0.186 5 | |
| DCRBBA | (1.316 9, 2.244 1) | 4.956 6 | 15 | 0.197 8 | |
| 8 | 文献[ | (5.555 6, 1.777 8, 2.666 7) | -112.753 1 | 616 | 7.373 6 |
| 文献[ | (5.555 6, 1.777 8, 2.666 7) | -112.753 1 | 45 | 0.319 3 | |
| DCRBBA | (5.555 6, 1.777 8, 2.666 7) | -112.753 1 | 2 | 0.015 9 | |
| 9 | 文献[ | (1.314 8, 0.139 6, 0.0, 0.423 3) | 0.890 2 | 15 | 0.130 6 |
| 文献[ | (1.314 8, 0.139 6, 0.0, 0.423 3) | 0.890 2 | 35 | 0.216 2 | |
| DCRBBA | (1.314 8, 0.139 6, 0.0, 0.423 3) | 0.890 2 | 6 | 0.069 5 |
"
| 算法DCRBBA | 文献[ | 文献[ | ||||||
| 迭代次数 | 时间/s | 迭代次数 | 时间/s | 迭代次数 | 时间/s | |||
| (2, 30, 30) | 4.0 | 0.118 2 | 139.2 | 1.678 5 | 29.6 | 0.274 3 | ||
| (2, 40, 40) | 7.3 | 0.197 7 | 548.5 | 7.512 6 | 28.0 | 0.325 9 | ||
| (2, 100, 100) | 3.2 | 0.529 0 | 34 868.4 | 718.818 4 | 17.9 | 1.416 4 | ||
| (2, 100, 200) | 5.8 | 2.128 5 | 48 469.1 | 1 530.544 3 | 46.7 | 5.039 6 | ||
| (2, 100, 300) | 4.5 | 3.450 7 | — | — | 38.1 | 5.915 4 | ||
| (2, 300, 300) | 3.0 | 7.498 7 | — | — | 13.9 | 20.554 8 | ||
| (3, 30, 30) | 6.9 | 0.176 5 | 403.8 | 4.419 6 | 125.7 | 1.204 8 | ||
| (3, 40, 40) | 7.5 | 0.251 0 | 252.1 | 3.397 0 | 67.7 | 0.801 2 | ||
| (3, 100, 100) | 6.8 | 1.196 1 | 3 925.8 | 64.317 4 | 61.0 | 4.517 7 | ||
| (3, 100, 200) | 10.3 | 3.908 9 | 31 073.9 | 959.202 5 | 152.5 | 17.108 2 | ||
| (3, 100, 300) | 8.6 | 1.524 9 | — | — | 198.4 | 31.601 8 | ||
| (3, 300, 300) | 5.8 | 7.242 5 | — | — | 36.2 | 66.255 4 | ||
| (4, 30, 30) | 14.6 | 0.420 1 | 403.1 | 4.530 5 | 504.6 | 11.014 7 | ||
| (4, 40, 40) | 17.6 | 0.586 6 | 667.2 | 9.342 4 | 2 325.6 | 53.322 6 | ||
| (4, 100, 100) | 10.7 | 0.663 7 | 1 501.0 | 27.086 2 | 85.0 | 5.973 5 | ||
| (4, 100, 200) | 16.2 | 1.638 2 | 43 682.2 | 1 381.898 8 | 682.5 | 76.599 1 | ||
| (5, 30, 30) | 26.4 | 0.803 4 | 266.9 | 3.292 9 | 558.7 | 12.100 7 | ||
| (5, 40, 40) | 18.7 | 0.662 2 | 491.1 | 7.877 9 | 536.4 | 13.971 1 | ||
| (5, 100, 100) | 23.8 | 1.421 5 | 4 056.8 | 71.662 9 | 416.0 | 29.826 1 | ||
| (7, 30, 30) | 62.5 | 2.136 7 | 424.8 | 4.888 2 | 15 530.4 | 317.040 7 | ||
| (7, 40, 40) | 45.8 | 1.930 7 | 400.6 | 6.021 2 | 902.2 | 17.939 1 | ||
| (7, 100, 100) | 37.2 | 2.220 2 | 2 326.3 | 42.471 0 | 2 051.4 | 148.069 4 | ||
| (10, 30, 30) | 136.9 | 5.147 6 | 333.3 | 4.446 3 | 10 916.9 | 186.163 9 | ||
| (10, 40, 40) | 94.4 | 4.544 1 | 371.9 | 5.701 0 | 11 007.2 | 320.768 1 | ||
| (10, 100, 100) | 79.0 | 4.969 9 | 1 443.0 | 27.580 1 | 6 874.6 | 516.006 4 | ||
| (10, 100, 300) | 380.7 | 59.050 2 | — | — | 8 397.9 | 1 551.552 3 | ||
"
| 算法DCRBBA | 文献[ | ||||||
| 迭代次数 | 时间/s | 最优值 | 迭代次数 | 时间/s | 最优值 | ||
| (20, 10, 10) | 187.3 | 3.958 7 | —0.347 1 | 20.7 | 0.187 6 | —0.347 1 | |
| (30, 10, 10) | 250.4 | 5.124 3 | —0.509 2 | 24.3 | 0.220 5 | —0.509 1 | |
| (40, 10, 10) | 436.9 | 10.996 6 | —0.372 9 | 36.5 | 0.275 8 | —0.372 9 | |
| (20, 20, 20) | 252.7 | 4.797 0 | —0.116 7 | 90.4 | 0.616 7 | —0.115 3 | |
| (30, 20, 20) | 607.1 | 13.811 2 | —0.244 7 | 102.9 | 0.757 3 | —0.243 7 | |
| (20, 30, 30) | 610.4 | 13.650 9 | 0.101 7 | 193.2 | 1.480 2 | 0.103 2 | |
| (30, 30, 30) | 13 230.0 | 391.176 7 | —0.124 3 | 662.5 | 5.527 9 | —0.124 1 | |
"
| 迭代次数 | 时间/s | 最优值 | 迭代次数 | 时间/s | 最优值 | |||
| (2, 100, 500) | 5.5 | 1.680 0 | —0.072 7 | (4, 100, 1 000) | 19.5 | 25.654 2 | —0.117 0 | |
| (2, 100, 700) | 5.1 | 2.620 3 | —0.069 5 | (4, 100, 3 000) | 21.0 | 327.761 9 | 0.000 7 | |
| (2, 100, 1 000) | 5.0 | 5.159 2 | —0.009 7 | (4, 100, 5 000) | 21.4 | 931.719 4 | —0.050 9 | |
| (2, 100, 3 000) | 6.5 | 99.546 4 | —0.033 8 | (5, 100, 500) | 23.3 | 5.449 0 | —0.040 3 | |
| (2, 100, 5 000) | 6.6 | 510.690 5 | —0.068 3 | (5, 100, 700) | 26.4 | 10.287 7 | —0.109 3 | |
| (3, 100, 500) | 9.8 | 3.403 5 | —0.089 3 | (5, 100, 1 000) | 30.0 | 24.112 9 | —0.040 1 | |
| (3, 100, 700) | 11.0 | 6.746 9 | 0.093 0 | (5, 100, 3 000) | 39.3 | 421.903 8 | —0.127 1 | |
| (3, 100, 1 000) | 10.4 | 14.623 1 | —0.022 3 | (7, 100, 500) | 66.4 | 14.785 0 | —0.076 7 | |
| (3, 100, 3 000) | 13.8 | 251.658 2 | —0.118 0 | (7, 100, 700) | 70.6 | 27.189 0 | —0.241 7 | |
| (3, 100, 5 000) | 12.9 | 965.636 6 | —0.045 5 | (7, 100, 1 000) | 84.4 | 66.218 9 | —0.102 3 | |
| (4, 100, 500) | 19.2 | 6.557 2 | 0.090 8 | (10, 100, 500) | 402.9 | 87.011 8 | 0.024 9 | |
| (4, 100, 700) | 17.9 | 10.511 3 | —0.123 9 | (10, 100, 1 000) | 384.2 | 285.929 0 | —0.162 9 |
"
| DCRBBA | EDCRBBA | ADMBB | ||||||
| 迭代次数 | 时间/s | 迭代次数 | 时间/s | 迭代次数 | 时间/s | |||
| (3, 20, 100) | 19.8 | 0.558 3 | 15.6 | 0.478 9 | 18.5 | 0.272 8 | ||
| (3, 30, 150) | 23.1 | 0.968 8 | 16.5 | 0.676 0 | 20.2 | 0.401 4 | ||
| (3, 40, 200) | 19.6 | 1.167 9 | 12.5 | 0.703 1 | 16.8 | 0.466 1 | ||
| (5, 20, 100) | 66.8 | 2.253 8 | 54.5 | 1.820 8 | 69.3 | 1.208 0 | ||
| (5, 30, 150) | 94.2 | 4.416 0 | 58.6 | 2.741 4 | 76.3 | 1.811 6 | ||
| (5, 40, 200) | 54.3 | 3.593 1 | 31.2 | 1.998 6 | 40.0 | 1.292 0 | ||
| (7, 20, 100) | 162.6 | 5.989 3 | 99.8 | 3.682 7 | 114.0 | 2.167 3 | ||
| (7, 30, 150) | 124.3 | 6.400 5 | 61.0 | 3.104 6 | 67.1 | 1.764 8 | ||
| (7, 40, 200) | 162.2 | 12.253 6 | 79.2 | 5.904 1 | 103.4 | 3.924 7 | ||
| (10, 20, 100) | 605.1 | 24.124 1 | 324.4 | 13.094 8 | 371.4 | 7.615 4 | ||
| (10, 30, 150) | 995.1 | 59.328 4 | 363.2 | 21.865 7 | 454.7 | 14.058 7 | ||
| (10, 40, 200) | 1 520.4 | 135.841 2 | 677.6 | 59.932 9 | 815.4 | 36.606 3 | ||
| 1 | Quesada I, Grossmann I E. Alternative bounding approximations for the global optimization of various engineering design problems[M]//Grossmann I E. (ed.) Global Optimization in Engineering Design, Nonconvex Optimization and Its Applications, Boston: Springer, 1996, 9: 309-331. |
| 2 | MulveyJ M,VanderbeiR J,ZeniosS A.Robust optimization of large-scale systems[J].Operations Research,1995,43(2):264-281. |
| 3 | Alberto C, Laura M. Generalized Convexity and Optimization: Theory and Applications[M]. Berlin: Springer, 2009. |
| 4 | CambiniR,SodiniC.On the minimization of a class of generalized linear functions on a flow polytope[J].Optimization,2014,63(10):1449-1464. |
| 5 | BennettK P.Global tree optimization: A non-greedy decision tree algorithm[J].Computing Science and Statistics,1994,26(1):156-156. |
| 6 | BennettK P,MangasarianO L.Bilinear separation of two sets in n-space[J].Computational Optimization and Applications,1993,2(3):207-227. |
| 7 | MatsuiT.NP-hardness of linear multiplicative programming and related problems[J].Journal of Global Optimization,1996,9(2):113-119. |
| 8 | ShenP,HuangB.Global algorithm for solving linear multiplicative programming problems[J].Optimization Letters,2020,14(3):693-710. |
| 9 | GaoY,XuC,YangY.An outcome-space finite algorithm for solving linear multiplicative programming[J].Applied Mathematics and Computation,2006,179(2):494-505. |
| 10 | BensonH P,BogerG M.Outcome-space cutting-plane algorithm for linear multiplicative programming[J].Journal of Optimization Theory and Applications,2000,104(2):301-322. |
| 11 | WangC F,LiuS Y,ShenP P.Global minimization of a generalized linear multiplicative programming[J].Applied Mathematical Modelling,2012,36(6):2446-2451. |
| 12 | ShenP,WangK,LuT.Outer space branch and bound algorithm for solving linear multiplicative programming problems[J].Journal of Global Optimization,2020,78(3):453-482. |
| 13 | WangC F,DengY P,ShenP P.A novel convex relaxation-strategy-based algorithm for solving linear multiplicative problems[J].Journal of Computational and Applied Mathematics,2022,407(1):114080. |
| 14 | RyooH S,SahinidisN V.Global optimization of multiplicative programs[J].Journal of Global Optimization,2003,26(4):387-418. |
| 15 | WangC F,BaiY Q,ShenP P.A practicable branch-and-bound algorithm for globally solving linear multiplicative programming[J].Optimization,2017,66(3):397-405. |
| 16 | HorstR,TuyH.Global Optimization: Deterministic Approaches[M].Deutschland:Springer Science & Business Media,2013. |
| 17 | YounessE A.Level set algorithm for solving convex multiplicative programming problems[J].Applied Mathematics and Computation,2005,167(2):1412-1417. |
| 18 | LiuS,ZhaoY.An efficient algorithm for globally solving generalized linear multiplicative programming[J].Journal of Computational and Applied Mathematics,2016,296(1):840-847. |
| 19 | FalkJ,PalocsayS.Image space analysis of generalized fractional programs[J].Journal of Global Optimization,1994,4(1):63-88. |
| 20 | KonnoH,KunoT.Linear multiplicative programming[J].Mathematical Programming,1992,56(1-3):51-64. |
| 21 | OliveiraR M,FerreiraP A V.An outcome space approach for generalized convex multiplicative programs[J].Journal of Global Optimization,2010,47(1):107-118. |
| 22 | CharkhgardH,SavelsberghM,TalebianM.A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints[J].Computers and Operations Research,2018,89(1):17-30. |
| 23 | ThuyL Q,KimN T B,ThienN T.Generating efficient outcome points for convex multiobjective programming problems and its application to convex multiplicative programming[J].Journal of Applied Mathematics,2011,11(1):1-21. |
| 24 | JiaoH,LiuS,ChenY.Global optimization algorithm for a generalized linear multiplicative programming[J].Journal of Applied Mathematics and Computing,2012,40(1):551-568. |
| 25 | ShenP P,WangK M,LuT.Global optimization algorithm for solving linear multiplicative programming problems[J].Optimization,2022,71(6):1-21. |
| 26 | ShenP P,JiaoH W.Linearization method for a class of multiplicative programming with exponent[J].Applied Mathematics and Computation,2006,183(1):328-336. |
| 27 | JiaoH W,LiuS Y,ZhaoY F.Effective algorithm for solving the generalized linear multiplicative problem with generalized polynomial constraints[J].Applied Mathematical Modelling,2015,39(23-24):7568-7582. |
| 28 | KonnoH,FukaishiK.A branch and bound algorithm for solving low rank linear multiplicative and fractional programming problems[J].Journal of Global Optimization,2000,18(3):283-299. |
| 29 | LuoH,BaiX,LimG,et al.New global algorithms for quadratic programming with a few negative eigenvalues based on alternative direction method and convex relaxation[J].Mathematical Programming Computation,2019,11(1):119-171. |
| 30 | LuoH,ChenS,WuH.A new branch-and-cut algorithm for non-convex quadratic programming via alternative direction method and semidefinite relaxation[J].Numerical Algorithms,2021,88(3):993-1024. |
| 31 | IBM ILOG CPLEX Optimization Studio. User's manual for CPLEX[EB/OL]. [2023-01-10]. https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex. |
| [1] | Xin SUN, Dongdong GE, Desheng FU, Zhiwei WEI, Fenglian DONG, Shichang PAN. A hybrid distribution recursion and branch and bound algorithm for Petroluem refinery optimization problem [J]. Operations Research Transactions, 2025, 29(4): 141-158. |
| [2] | Suxia MA, Yuelin GAO, Hongwei LIN, Bo ZHANG. A new non parameter-filled function method for global optimization [J]. Operations Research Transactions, 2025, 29(2): 141-157. |
| [3] | Liuyang YUAN, Mengyao TANG, Xiaoni CHI. A new class of parameter-free filled tunnel function methods [J]. Operations Research Transactions, 2025, 29(2): 214-220. |
| [4] | Fusheng BAI, Mi LAN. An adaptive surrogate optimization method for expensive black-box problems with hidden constraints [J]. Operations Research Transactions, 2024, 28(1): 89-100. |
| [5] | Jing YU, Zhe XU, Fang XIE. A branch and bound method for project scheduling problem with activities overlapping [J]. Operations Research Transactions, 2023, 27(1): 115-126. |
| [6] | Xiaoli HUANG, Yuelin GAO, Bo ZHANG, Xia LIU. An adaptive global optimization algorithm for solving quadratically constrained quadratic programming problems [J]. Operations Research Transactions, 2022, 26(2): 83-100. |
| [7] | Fusheng BAI, Dan FENG, Ke ZHANG. Combined response surface method with adaptive sampling for expensive black-box global optimization [J]. Operations Research Transactions, 2021, 25(2): 1-14. |
| [8] | Jiali CHEN, Ying ZHANG, Shenggang WANG, Xiaoying XIE. A new filled function and its application in data fitting problems [J]. Operations Research Transactions, 2021, 25(1): 81-88. |
| [9] | Deqiang QU, Youlin SHANG, Yue ZHAN, Dan WU. A new parameterless filled function for global optimization problems [J]. Operations Research Transactions, 2021, 25(1): 89-95. |
| [10] | ZHAO Dan, GAO Yuelin. Non-parameter filled function method for nonlinear integer programming [J]. Operations Research Transactions, 2020, 24(4): 63-73. |
| [11] | CHEN Yong, WANG Wei, XU Yifan. An stochastic algorithm for global optimization with linear constraints based on intermittent diffusion [J]. Operations Research Transactions, 2020, 24(1): 88-100. |
| [12] | WANG Weixiang, SHANG Youlin, WANG Duo. Filled function method for solving non-smooth box constrained global optimization problems [J]. Operations Research Transactions, 2019, 23(1): 28-34. |
| [13] | TIAN Mingyu, YANG Yongjian. A global optimization algorithm for polynomial programming [J]. Operations Research Transactions, 2018, 22(4): 79-88. |
| [14] |
CAI Shuang, YANG Ke, LIU Ke.
Model and algorithms of the distributed permutation flow shop scheduling problem with machine eligibility constraints
[J]. Operations Research Transactions, 2018, 22(4): 17-30.
|
| [15] | WU Peipei, GAO Yuelin. A new single parameter filled function method for nonlinear integer programming [J]. Operations Research Transactions, 2017, 21(3): 111-118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||