Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (3): 202-222.doi: 10.15960/j.cnki.issn.1007-6093.2025.03.010
Special Issue: 第九届中国运筹学会科学技术奖获奖者专辑
• Research Article • Previous Articles Next Articles
Received:
2025-03-03
Online:
2025-09-15
Published:
2025-09-09
Contact:
Lin CHEN
E-mail:chenlin198662@zju.edu.cn
CLC Number:
Lin CHEN. Application of additive combinatorics in several classic combinatorial optimization problems[J]. Operations Research Transactions, 2025, 29(3): 202-222.
"
背包问题 | 参考文献 |
Bellman[ | |
Pisinger[ | |
Tamir[ | |
Kellerer和Pferschy[ | |
Bateni等[ | |
Bateni等[ | |
Eisenbrand和Weismantel[ | |
Polak等[ | |
Bringmann和Cassis[ | |
Chen等[ | |
Bringmann[ |
"
背包问题 | 参考文献 |
Sahni[ | |
Ibarra和Kim[ | |
Lawler[ | |
Kellerer和Pferschy[ | |
Rhee[ | |
Chan[ | |
Jin[ | |
Deng等[ | |
Chen等[ |
"
划分问题 | 参考文献 |
*Ibarra和Kim[ | |
*Gens和Levner[ | |
*Lawler[ | |
Gens和Levner[ | |
Mucha等[ | |
Bringmann和Nakos[ | |
Deng等[ | |
Chen等[ |
1 | GareyM R,JohnsonD S.Computers and Intractability[M].San Francisco:W.H. Freeman Company,1979. |
2 |
NakosV.Nearly optimal sparse polynomial multiplication[J].IEEE Transactions on Information Theory,2020,66(11):7231-7236.
doi: 10.1109/TIT.2020.2989385 |
3 | Bringmann K, Fischer N, Nakos V. Sparse nonnegative convolution is equivalent to dense nonnegative convolution [C]//53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021: 1711-1724. |
4 |
SárközyA.Finite addition theorems, Ⅰ[J].Journal of Number Theory,1989,32(1):114-130.
doi: 10.1016/0022-314X(89)90102-9 |
5 |
SárközyA.Fine Addition Theorems, Ⅱ[J].Journal of Number Theory,1994,48(2):197-218.
doi: 10.1006/jnth.1994.1062 |
6 |
LevV F.Blocks and progressions in subset sum sets[J].Acta Arithmetica,2003,106(2):123-142.
doi: 10.4064/aa106-2-3 |
7 |
SzemerédiE,VuV H.Finite and infinite arithmetic progressions in sumsets[J].Annals of Mathematics,2006,163(1):1-35.
doi: 10.4007/annals.2006.163.1 |
8 | Karp R M. Reducibility among combinatorial problems [M]//Miller R E, Thatcher J W, Bohlinger J D. (eds. )Complexity of Computer Computations, Boston: Springer, 1972: 85-103 |
9 | BellmanR.Dynamic Programming[M].Princeton:Princeton University Press,1957. |
10 |
PisingerD.Linear time algorithms for knapsack problems with bounded weights[J].Journal of Algorithms,1999,33(1):1-14.
doi: 10.1006/jagm.1999.1034 |
11 |
TamirA.New pseudopolynomial complexity bounds for the bounded and other integer knapsack related problems[J].Operations Research Letters,2009,37(5):303-306.
doi: 10.1016/j.orl.2009.05.003 |
12 |
KellererH,PferschyU.Improved dynamic programming in connection with an FPTAS for the knapsack problem[J].Journal of Combinatorial Optimization,2004,8(1):5-11.
doi: 10.1023/B:JOCO.0000021934.29833.6b |
13 | Bateni M H, Hajiaghayi M T, Seddighin S, et al. Fast algorithms for knapsack via convolution and prediction [C]//50th Annual ACM SIGACT Symposium on Theory of Computing, 2018: 1269-1282. |
14 | Axiotis K, Tzamos C. Capacitated dynamic programming: Faster knapsack and graph algorithms [C]//46th International Colloquium on Automata, Languages, and Programming, 2019, 19: 1-13. |
15 | EisenbrandF,WeismantelR.Proximity results and faster algorithms for integer programming using the Steinitz Lemma[J].ACM Transactions on Algorithms,2019,16(1):1-14. |
16 | Polak A, Rohwedder L, Wȩgrzycki K. knapsack and subset sum with small items [C]//48th International Colloquium on Automata, Languages, and Programming, 2021, 106: 1-19. |
17 | Bringmann K, Cassis A. Faster 0-1-knapsack via near-convex min-plus-convolution [C]//31 st Annual European Symposium on Algorithms, 2023, 24 1-16. |
18 | Chen L, Lian J, Mao Y, et al. Faster algorithms for bounded knapsack and bounded subset sum via fine-grained proximity results [C]//35th Annual ACM-SIAM Symposium on Discrete Algorithms, 2024: 4828-4848. |
19 | Bringmann K. Knapsack with small items in near-quadratic time [C]//56th Annual ACM Symposium on Theory of Computing, 2024: 259-270. |
20 | Jin C. 0-1 knapsack in nearly quadratic time [C]//56th Annual ACM Symposium on Theory of Computing, 2024: 271-282. |
21 | CyganM,MuchaM,WȩgrzyckiK,et al.On problems equivalent to (min, +)-convolution[J].ACM Transactions on Algorithms,2019,15(1):1-25. |
22 | Künnemann M, Paturi R, Schneider S. On the fine-grained complexity of one-dimensional dynamic programming [C]//44th International Colloquium on Automata, Languages, and Programming, 2017, 21: 1-15. |
23 |
SahniS.Approximate algorithms for the 0/1 knapsack problem[J].Journal of the ACM,1975,22(1):115-124.
doi: 10.1145/321864.321873 |
24 |
IbarraO H,KimC E.Fast approximation algorithms for the knapsack and sum of subset problems[J].Journal of the ACM,1975,22(4):463-468.
doi: 10.1145/321906.321909 |
25 |
LawlerE L.Fast approximation algorithms for knapsack problems[J].Mathematics of Operations Research,1979,4(4):339-356.
doi: 10.1287/moor.4.4.339 |
26 | Rhee D. Faster fully polynomial approximation schemes for knapsack problems [D]. Massachusetts Institute of Technology, 2015. |
27 | Chan T M. Approximation schemes for 0-1 knapsack [C]//1st Symposium on Simplicity in Algorithms, 2018, 5: 1-12. |
28 | Jin C. An improved FPTAS for 0-1 knapsack [C]//Proceedings of 46th International Colloquium on Automata, Languages, and Programming, 2019, 76: 1-14. |
29 | Deng M, Jin C, Mao X. Approximating knapsack and partition via dense subset sums [C]//34th Annual ACM-SIAM Symposium on Discrete Algorithms, 2023: 2961-2979. |
30 | Chen L, Lian J, Mao Y, et al. A nearly quadratic-time FPTAS for knapsack [C]//56th Annual ACM Symposium on Theory of Computing, 2024: 283-294. |
31 | Mao X. (1-ε)-approximation of knapsack in nearly quadratic time [C]//56th Annual ACM Symposium on Theory of Computing, 2024: 295-306. |
32 | VaziraniV V.Approximation Algorithms[M].Heidelberg:Springer,2001. |
33 | AggarwalA,KlaweM M,MoranS,et al.Geometric applications of a matrix-searching algorithm[J].Algorithmica,1987,2(1):195-208. |
34 | Bringmann K, Wellnitz P. On near-linear-time algorithms for dense subset sum [C]//2nd ACM-SIAM Symposium on Discrete Algorithms, 2021: 1777-1796. |
35 |
SzemerédiE,VuV.Long arithmetic progressions in sumsets: Thresholds and bounds[J].Journal of the American Mathematical Society,2005,19(1):119-169.
doi: 10.1090/S0894-0347-05-00502-3 |
36 | Bringmann K, Nakos V. A Fine-Grained perspective on approximating subset sum and partition [C]//32nd ACM-SIAM Symposium on Discrete Algorithms, 2021: 1797-1815. |
37 | AbboudA,BringmannK,HermelinD,et al.SETH-based lower bounds for subset sum and bicriteria path[J].ACM Transactions on Algorithms,2022,18(1):1-22. |
38 | Gens G V, Levner E V. Fast approximation algorithms for knapsack type problems [C]//Optimization Techniques, Lecture Notes in Control and Information Sciences, 1980: 185-194. |
39 | Mucha M, WȨgrzycki K, Włodarczyk M. A Subquadratic Approximation Scheme for Partition [C]//30th Annual ACM-SIAM Symposium on Discrete Algorithms, 2019: 70-88. |
40 | Wu X, Chen L. Improved approximation schemes for (un-)bounded subset-sum and partition [EB/OL]. [2025-03-14]. arXiv: 221202883 |
41 | Chen L, Lian J, Mao Y, et al. Approximating partition in near-linear time [C]//56th Annual ACM Symposium on Theory of Computing, 2024: 307-318. |
42 | Karp R M. The fast approximate solution of hard combinatorial problems [C]//6th South-Eastern Conf Combinatorics, Graph Theory and Computing, 1975: 15-31. |
43 | GensG V,LevnerE V.Approximation algorithm for some scheduling problems[J].Engrg Cybernetics,1978,6,38-46. |
44 | Gens G V, Levner E V. Computational complexity of approximation algorithms for combinatorial problems [C]//International Symposium on Mathematical Foundations of Computer Science, 1979. |
45 | Chen L, Lian J, Mao Y, et al. An improved pseudopolynomial time algorithm for subset sum [C]//65th Symposium on Foundations of Computer Science, 2024. |
46 | FrǐmanG A.Foundations of a Structual Theory of Set Addition[M].Providence:American Mathematical Society,1973. |
47 | TaoT,VuV H.Additive Combinatorics[M].Cambridge:Cambridge University Press,2006. |
48 | BalogA,SzemerédiE.A statistical theorem of set addition[J].Combinatorica,1994,14(3):263-268. |
49 | GowersW T.A new proof of Szemerédi's theorem[J].Geometric & Functional Analysis GAFA,2001,11(3):465-588. |
50 | Balog A. Many additive quadruples [C]//Proceedings and Lecture Notes in Additive Combinatorics, 2007, 43: 10. |
51 | SudakovB,SzemerédiE,VuV.On a question of erdős and moser[J].Duke Mathematical Journal,2005,126(1):129-155. |
52 | Bremner D, Chan T M, Demaine E D, et al. Necklaces, convolutions, and x+y [C]//14th Annual European Symposium, 2006: 160-171. |
53 | Williams R. Faster all-pairs shortest paths via circuit complexity [C]//46th annual ACM symposium on Theory of computing, 2014: 664-673. |
54 | Chan T M, Lewenstein M. Clustered integer 3SUM via additive combinatorics [C]//47th annual ACM symposium on Theory of computing, 2015: 31-40. |
55 | Chi S, Duan R, Xie T, et al. Faster min-plus product for monotone instances [C]//54th Annual ACM SIGACT Symposium on Theory of Computing, 2022: 1529-1542. |
56 | He Q, Xu Z. Simple and faster algorithms for knapsack [C]//7th Symposium on Simplicity in Algorithms, 2024: 56-62. |
57 | Bringmann K. A near-linear pseudopolynomial time algorithm for subset sum [C]//28th Annual ACM-SIAM Symposium on Discrete Algorithms, 2017: 1073-1084. |
58 | KellererH,MansiniR,PferschyU,et al.An efficient fully polynomial approximation scheme for the Subset-Sum Problem[J].Journal of Computer and System Sciences,2003,66(2):349-370. |
59 | Bringmann K, Dürr A, Polak A. Even faster knapsack via rectangular monotone min-plus convolution and balancing [C]//32nd Annual European Symposium on Algorithms, 2024, 33: 1-15. |
[1] | ZHANG Yuzhong, LI Shuguang. Scheduling with tree-hierarchical processing set restrictions [J]. Operations Research Transactions, 2020, 24(4): 107-112. |
[2] | FAN Jing, LU Xiwen. Supply chain scheduling problem under simple linear deterioration on a single-machine with an unavailability constraint [J]. Operations Research Transactions, 2016, 20(4): 69-76. |
[3] | ZHANG Yuzhong, YANG Xiaoguang. The continuity properties of optimal value function of discrete optimization problems [J]. Operations Research Transactions, 2016, 20(3): 79-84. |
[4] | ZHU Tingting, CHEN Wei, CHEN Juanjuan, SUN Wenhao. Direct algorithm for continuous separable Knapsack problem [J]. Operations Research Transactions, 2013, 17(1): 44-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||