Operations Research Transactions ›› 2025, Vol. 29 ›› Issue (1): 41-54.doi: 10.15960/j.cnki.issn.1007-6093.2025.01.004
Previous Articles Next Articles
Miaohui HE1, Xuxiang DUAN1, Zhiyou WU1,*()
Received:
2021-12-26
Online:
2025-03-15
Published:
2025-03-08
Contact:
Zhiyou WU
E-mail:zywu@cqnu.edu.cn
CLC Number:
Miaohui HE, Xuxiang DUAN, Zhiyou WU. A new algorithm for improving the completion performance of knowledge graph of long-tail data[J]. Operations Research Transactions, 2025, 29(1): 41-54.
"
| | | | neg | | | |
TransE | 0.3 | 300 | 3 | 25 | |||
TransE-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 | |
TransH | 0.3 | 300 | 3 | 25 | |||
TransH-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 | |
TransD | 0.3 | 300 | 3 | 25 | |||
TransD-DEM | 0.000 5 | 300 | 3 | 25 | 300 | 200 |
"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 224.81 | 129.40 | 0.248 | 0.418 | 0.498 | 0.658 |
TransE-DEM | ||||||
TransH | 221.45 | 126.64 | 0.245 | 0.413 | 0.495 | 0.657 |
TransH-DEM | ||||||
TransD | 221.82 | 126.62 | 0.246 | 0.417 | 0.497 | 0.660 |
TransD-DEM |
"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 203.17 | 119.80 | 0.250 | 0.427 | 0.515 | 0.674 |
TransE-DEM | ||||||
TransH | 200.73 | 117.56 | 0.246 | 0.422 | 0.511 | 0.671 |
TransH-DEM | ||||||
TransD | 199.81 | 116.63 | 0.249 | 0.427 | 0.514 | 0.676 |
TransD-DEM |
"
MR | FMR | MRR | FMRR | Hit@10 | FHit@10 | |
TransE | 438.86 | 224.38 | 0.219 | 0.328 | 0.329 | 0.504 |
TransE-DEM | ||||||
TransH | 426.43 | 216.45 | 0.226 | 0.331 | 0.332 | 0.510 |
TransH-DEM | ||||||
TransD | 439.65 | 225.48 | 0.217 | 0.326 | 0.325 | 0.507 |
TransD-DEM |
1 | Yang Y, Agrawal D, Jagadish H V, et al. An efficient parallel keyword search engine on knowledge graphs [C]//2019 IEEE 35th International Conference on Data Engineering, 2019: 338-349. |
2 | Yao X, Van Durme B. Information extraction over structured data: Question answering with freebase [C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 956-966. |
3 | Zhang F, Yuan N J, Lian D, et al. Collaborative knowledge base embedding for recommender systems [C]//Proceedings of the 22nd ACM SIGKDD Iinternational Conference on Knowledge Discovery and Data Mining, 2016: 353-362. |
4 |
Rotmensch M , Halpern Y , Tlimat A , et al. Learning a health knowledge graph from electronic medical records[J]. Scientific Reports, 2017, 7 (1): 1- 11.
doi: 10.1038/s41598-016-0028-x |
5 |
Suchanek F M , Kasneci G , Weikum G . Yago: A large ontology from wikipedia and wordnet[J]. Journal of Web Semantics, 2008, 6 (3): 203- 217.
doi: 10.1016/j.websem.2008.06.001 |
6 |
Lehmann J , Isele R , Jakob M , et al. DBpedia|A large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6 (2): 167- 195.
doi: 10.3233/SW-140134 |
7 |
Miller G A . WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38 (11): 39- 41.
doi: 10.1145/219717.219748 |
8 | Carlson A, Betteridge J, Kisiel B, et al. Toward an architecture for never-ending language learning [C]//Twenty-fourth AAAI Conference on Artificial Intelligence, 2010: 1306-1313. |
9 | Bordes A , Usunier N , Garcia-Duran A , et al. Translating embeddings for modeling multirelational data[J]. Advances in Neural Information Pprocessing Systems, 2013, 2, 2787- 2795. |
10 | Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes [C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119. |
11 | Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion [C]//Twenty-ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2187. |
12 | Ji G, He S, Xu L, et al. Knowledge graph embedding via dynamic mapping matrix [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696. |
13 | Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data [C]//International Conference on Machine Learning, 2011: 809-816. |
14 | Yang B, Yih W, He X, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. (2015-08-29)[2021-11-26]. arXiv: 1412.6575. |
15 | Trouillon T, Welbl J, Riedel S, et al. Complex embeddings for simple link prediction [C]//International Conference on Machine Learning, 2016: 2071-2080. |
16 | Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2nd knowledge graph embeddings [C]//Thirty-second AAAI Conference on Artificial Intelligence, 2018: 1811-1818. |
17 | Vu T, Nguyen T D, Nguyen D Q, et al. A capsule network-based embedding model for knowledge graph completion and search personalization [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 2180-2189. |
18 | Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge graph embedding by relational rotation in complex space [C]//Proceedings of the International Conference on Learning Representations, 2019: 926-934. |
19 | Zhang S, Tay Y, Yao L, et al. Quaternion knowledge graph embeddings [C]//Advances in Neural Information Processing Systems, 2019: 2731-2741. |
20 | Akrami F, Saeef M S, Zhang Q, et al. Realistic re-evaluation of knowledge graph completion methods: An experimental study [C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 1995-2010. |
21 | Metz L, Maheswaranathan N, Cheung B, et al. Meta-learning update rules for unsupervised representation learning [EB/OL]. (2019-02-26)[2021-11-25]. arXiv: 1804.00222. |
22 |
Zhang Z , Zhuang F , Qu M , et al. Knowledge graph embedding with shared latent semantic units[J]. Neural Networks, 2021, 139, 140- 148.
doi: 10.1016/j.neunet.2021.02.013 |
23 |
Dempster A P , Laird N M , Rubin D B . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x |
[1] | Jing LI, Linmin HU, Mingjia LI. Reliability modeling and optimization of k=(M+N): G system based on retrial mechanism and switching failure [J]. Operations Research Transactions, 2024, 28(4): 44-56. |
[2] | Shengxiang DENG, Xudong LI. Fast computation of generalized Jacobians of polyhedral projectors and extensions [J]. Operations Research Transactions, 2023, 27(4): 61-80. |
[3] | Jing YU, Zhe XU, Fang XIE. A branch and bound method for project scheduling problem with activities overlapping [J]. Operations Research Transactions, 2023, 27(1): 115-126. |
[4] | Yubo DAI, Yihong DUAN, Longcheng LIU, Zihao WANG. Randomized approximation algorithms for a class of one-dimensional online unit clustering problem [J]. Operations Research Transactions, 2022, 26(3): 143-150. |
[5] | Jiahao LYU, Honglin LUO, Zehua YANG, Jianwen PENG. A stochastic Bregman ADMM with its application in training sparse structure SVMs [J]. Operations Research Transactions, 2022, 26(2): 16-30. |
[6] | Huiling ZHANG, Naoerzai SAI, Xiaoyun WU. Modified PRP conjugate gradient method for unconstrained optimization [J]. Operations Research Transactions, 2022, 26(2): 64-72. |
[7] | Yaxing LYU, Meijia HAN, Zilin HUANG, Wenxing ZHU. An equivalence condition for sparse optimization problem with non-negative constraints [J]. Operations Research Transactions, 2022, 26(1): 43-59. |
[8] | Chen XU, Yinfeng XU, Feifeng ZHENG. Multitasking scheduling considering part jobs uninterrupted assignment [J]. Operations Research Transactions, 2021, 25(4): 91-100. |
[9] | Xueling ZHOU, Meixia LI, Haitao CHE. Successive relaxed projection algorithm for multiple-sets split equality problem [J]. Operations Research Transactions, 2021, 25(2): 93-103. |
[10] | Shan SONG, Yan FENG, Changqing XU. Face recognition algorithm based on orthogonal and sparse constrained nonnegative tensor factorization [J]. Operations Research Transactions, 2021, 25(2): 55-66. |
[11] | Jiaqing YE, Qianzhu CHEN, Haiping HU. Optimizing first-order methods for smooth convex minimization of gradient Q-linearly convergence [J]. Operations Research Transactions, 2021, 25(1): 96-106. |
[12] | MIAO Xiaonan, GU Jian, XIAO Xiantao. A cubic regularization method for solving nonsmooth equations [J]. Operations Research Transactions, 2019, 23(2): 17-30. |
[13] | GAO Leifu, YAN Tingting. A class of generalized mond-weir type duality theory for mathematical programs with equilibrium constraints [J]. Operations Research Transactions, 2019, 23(2): 95-103. |
[14] | CHEN Xinbei, ZHU Mingkang, CHEN Jianli. Iterative projection gradient hard thresholding pursuit algorithm for sparse optimization [J]. Operations Research Transactions, 2019, 23(1): 1-14. |
[15] | XU Jiaojiao, YANG Zhixia, JIANG Yaolin. The best rank-one approximation of the symmetric tensor based on the block circulant matrix [J]. Operations Research Transactions, 2019, 23(1): 53-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||