1 |
黄韬,霍如,刘江,等.未来网络发展趋势与展望[J].中国科学: 信息科学,2019,49,941-948.
|
2 |
张超. 有向网络容量扩张问题研究[D]. 武汉: 华中科技大学, 2007.
|
3 |
LiJ P,ZhuJ P.The capacity expansion path problem in networks[J].Journal of Applied Mathematics,2013,7(16):361-376.
|
4 |
杨宇. 有向网络中最大容量树形图扩容问题[D]. 昆明: 云南大学, 2011.
|
5 |
朱娟萍. 限制性网络扩容问题[D]. 昆明: 云南大学, 2011.
|
6 |
李彬,张洁,陈宋宋,等.基于复杂网络的电力通信网扩容保护策略[J].电网技术,2018,42(6):1974-1980.
|
7 |
王凌风,卢国潇.基于帕累托法则的网络负荷扩容研究[J].邮电设计技术,2019,7,54-59.
|
8 |
FragkosL,CordeauJ F,JansR.Decomposition methods for large-scale network expansion problems[J].Transportation Research Part B,2021,144,60-80.
doi: 10.1016/j.trb.2020.12.002
|
9 |
张国清,程苏琦.小世界网络中的删边扩容效应[J].中国科学: 信息科学,2012,42(2):151-160.
|
10 |
赵焱鑫,李黎,王小明.复杂网络加边扩容策略研究[J].计算机应用研究,2015,32(6):1839-1841.
doi: 10.3969/j.issn.1001-3695.2015.06.053
|
11 |
FulkersonD R.Increasing the capacity of a network: The parametric budget problem[J].Management Science,1959,5(4):472-483.
doi: 10.1287/mnsc.5.4.472
|
12 |
SchwarzS,KrumkeS O.On budget—constrained flow improvement[J].Information Proccssing Letters,1998,66,291-297.
doi: 10.1016/S0020-0190(98)00070-2
|
13 |
YangC,LiuJ L.A capacity expansion problem with budget constraint and bottleneck limitation[J].Acta Mathematica Scientia,2002,22(2):207-212.
doi: 10.1016/S0252-9602(17)30473-3
|
14 |
ZhangJ Z,YangC,LinY X.A class of bottleneck expansion problems[J].Computers & Operations Research,2001,28(6):505-519.
|
15 |
ZhangJ Z,LiuJ L.An oracle strongly polynomial algorithm for bottleneck expansion problems[J].Operation Methods and Software,2002,17(1):61-75.
doi: 10.1080/10556780290027819
|
16 |
YangC,ZhangJ Z.On the bottleneck capacity expansion problems on networks[J].Acta Mathematica Scientia,2006,26B(2):202-208.
|
17 |
TaghaviM,HuangK.A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints[J].Annals of Operations Research,2020,284,605-621.
doi: 10.1007/s10479-018-2862-7
|
18 |
田丰,马仲蕃.图与网络流理论[M].北京:科学出版社,1987.
|
19 |
ChuY J,LiuT H.On the shortest arborescence of a directed graph[J].Science Sinica,1965,14,1396-1400.
|
20 |
EdmondsJ.Optimum branchings[J].Research of the National Bureau of Standards,1967,71B,233-240.
doi: 10.6028/jres.071B.032
|