运筹学

可迹图的谱充分条件

展开
  • 1. 安庆师范大学数学与计算科学学院, 安徽安庆 246133

收稿日期: 2016-06-06

  网络出版日期: 2017-03-15

基金资助

安徽省自然科学基金(No. 11040606M14), 安徽省高校自然科学基金(No. KJ2015ZD27)

Spectral sufficient conditions on traceable graphs

Expand
  • 1. School of Mathematics and Computation Sciences, Anqing Normal University, Anqing 246133, Anhui China

Received date: 2016-06-06

  Online published: 2017-03-15

摘要

设G是一个简单图, A(G), Q(G)以及Q(G)分别为G的邻接矩阵, 无符号拉普拉斯矩阵以及距离无符号拉普拉斯矩阵, 其最大特征值分别称为G的谱半径, 无符号拉普拉斯谱半径以及距离无符号拉普拉斯谱半径. 如果图G中有一条包含G中所有顶点的路, 则称这条路为哈密顿路; 如果图G含有哈密顿路, 则称G为可迹图; 如果图G含有从任意一点出发的哈密顿路, 则称G从任意一点出发都是可迹的. 主要研究利用图G的谱半径, 无符号拉普拉斯谱半径, 以及距离无符号拉普拉斯谱半径, 分别给出图G从任意一点出发都是可迹的充分条件.

本文引用格式

余桂东, 周甫, 刘琦 . 可迹图的谱充分条件[J]. 运筹学学报, 2017 , 21(1) : 118 -124 . DOI: 10.15960/j.cnki.issn.1007-6093.2017.01.012

Abstract

Let G be a simple graph, A(G), Q(G) and Q(G) are the adjacency matrix, the signless Laplacian matrix, and the distance signless Laplacian matrix of G, respectively. The largest eigenvalues of A(G), Q(G) and Q(G) are called the spectral radius, the signless Laplacian spectral radius and the distance signless Laplacian spectral radius of G, respectively. A path is called a Hamilton path if it contains all vertices of G. A graph is traceable if it contains a Hamilton path. A graph is traceable from every vertex if it contains a Hamilton path from every vertex. The main research of this paper is to give some sufficient conditions for a graph to be traceable from every vertex in terms of spectral radius, signless Laplacian spectral radius and distance signless Laplacian spectral radius of the graph, respectively.

参考文献

[1] Fiedler M, Nikiforov V. Spectral radius and Hamiltonicity of graphs [J]. Linear Algebra Appl., 2010, 432: 2170-2173.
[2] Zhou B. Signless Laplacian spectral radius and Hamiltonicity [J]. Linear Algebra Appl., 2010, 432: 566-570.
[3] Li R. Energy and some Hamiltonian properties of graphs [J]. Applied Mathematical Sciences, 2009, 3: 2775-2780.
[4] Butler S, Chung F. Small spectral gap in the combinatorial Laplacian implies Hamiltonian [J]. Annals Comb., 2010, 13: 403-412.
[5] Lu M, Liu H Q, Tian F. Spectral radius and Hamiltonian graphs [J]. Linear Algebra Appl., 2012, 437: 1670-1674.
[6] Fan Y Z, Yu G D. Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian [EB/OL]. [2013-10-24]. http://www.paper.edu.cn/en releasepaper/pdf/.
[7] Yu G D, Fan Y Z. Spectral conditions for a graph to be Hamilton-connected [J]. Applied Mechanics and Materials, 2013, 336-338: 2329-2334.
[8] Yu G D, Ye M L, Cai G X, et al. Signless Laplacian Spectral Conditions for Hamiltonicity of Graphs [J]. Journal of Applied Mathematics, 2014, Article ID 282053, 6 pages.
[9] Yu G D, Cai G X, Ye M L, et al. Energy conditions for Hamiltonicity of graphs [J]. Discrete Dynamics in Nature and Society, 2014, Article ID 305164,6 pages.
[10] 余桂东. Spectral Radius and Hamiltonicity of a Graph [J]. 应用数学, 2014, 27: 131-138.
[11] Ning B, Li B. Spectral radius and traceability of connected claw-free graphs [J]. Mathematics, 2014, 2015(2): 1-8.
[12] 李乔. 矩阵论八讲 [M]. 上海:上海科学技术出版社, 1988.
[13] Cvetkovi\'c D, Rowlinson P, Simi\'c S K. signless Laplacians of finite graphs [J]. Linear Algebra Appl., 2007, 423(1): 155-171.
[14] Hong Y. A bound on the spectral radius of graphs in terms of genus [J]. Journal of Combinatorial Theory, 1998, 74: 153-159.
[15] Feng L H, Yu G H. On three conjectures involving the signless Laplacian spectral radius of graphs [J]. Publ. Inst. Math. (Beograd), 2009, 85: 35-38.
[16] Xing R D, Zhou B, Li J P. On the distance signless Laplacian spectral radius of graphs [J]. Linear and Multilinear Algebra. 2014, 62: 1377-1387.
[17] Bondy J A, Murty U S. Graph Theory [M]. Grad.Texts in Math.vol.244, Springer, New York, 2008.
文章导航

/