非合作情形下无领导者-跟随者顺序时的串联系统效率评价

展开
  • 1. 福州大学经济与管理学院, 福建福州 350108
    2. 中南大学商学院, 湖南长沙 410083
胡军华 E-mail: hujunhua@csu.edu.cn

收稿日期: 2023-04-24

  网络出版日期: 2025-03-08

基金资助

国家自然科学基金(72401067);教育部人文社会科学规划基金(23A10533023);福建省社会科学基金(FJ2023C025)

版权

运筹学学报编辑部, 2025, 版权所有,未经授权,不得转载。

Efficiency evaluation for the serial system in the absence of a given leader-follower order in the non-cooperative case

Expand
  • 1. School of Economics and Management, Fuzhou University, Fuzhou 350108, Fujian, China
    2. School of Business, Central South University, Changsha 410083, Hunan, China

Received date: 2023-04-24

  Online published: 2025-03-08

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

非合作情形下, 用数据包络分析(data envelopment analysis, DEA)方法对串联系统进行效率评价的研究中, 经典的领导者-追随者网络DEA模型(或非合作网络DEA模型)可为系统及其子系统提供唯一的评价结果。但其前提是预先给定系统内部的领导者-追随者顺序。不同的顺序产生不同的评价结果, 且并非所有系统均在同一顺序中获得最佳效率。另外, 现有网络DEA研究多认为决策者是完全理性的, 与现实中决策者有限理性的表现不符。本文针对“非合作情形下无领导者-跟随者顺序时如何评价串联系统及其子系统效率”的问题, 基于字典式优化算法和前景理论, 提出新的串联系统效率评价方法。该方法可提供唯一的、全面的、可比较的效率评价结果。最后, 用14家电力公司数据验证该方法。

本文引用格式

文瑶, 胡军华 . 非合作情形下无领导者-跟随者顺序时的串联系统效率评价[J]. 运筹学学报, 2025 , 29(1) : 77 -97 . DOI: 10.15960/j.cnki.issn.1007-6093.2025.01.007

Abstract

In the non-cooperative case, among the studies of efficiency evaluation of serial systems using data envelopment analysis (DEA) method, the excellent leader-follower or non-cooperative network DEA model can provide a unique evaluation result for the serial system and their internal sub-systems. However, the premise is a given leader-follower order that reveals which stage is more important for improving system's efficiency. Different leader-follower orders yield various evaluation results and not necessarily all systems obtain their best efficiency in the same order. Furthermore, existing studies on network DEA mostly look decision makers completely rational, which is not in line with the bounded rational behavior in practice. This study focuses on the question of "In the non-cooperative case without a given leader-follower order, how to evaluate efficiencies of the serial system and its internal sub-systems". To answer this question, we propose a novel approach for measuring efficiencies of the serial system and its sub-systems based on a lexicographical optimization approach and the prospect theory, considering the bounded rationality of decision makers and all leader-follower orders. This method can provide a unique, comprehensive, and comparable efficiency composition result. The experiment with the data of 14 electric power companies is used to validate this method.

参考文献

1 Liang L , Cook W D , Zhu J . DEA models for two-stage processes: Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55 (7): 643- 653.
2 Liang L , Yang F , Cook W D , et al. DEA models for supply chain efficiency evaluation[J]. Annals of Operations Research, 2006, 145 (1): 35- 49.
3 Yang J , Fang L . Average lexicographic efficiency decomposition in two-stage data envelopment analysis: An application to China's regional high-tech innovation systems[J]. Annals of Operations Research, 2022, 312, 1051- 1093.
4 Li H , Chen C , Cook W D , et al. Two-stage network DEA: Who is the leader?[J]. Omega, 2018, 74, 15- 19.
5 Charnes A , Cooper W W , Rhodes E . Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2 (6): 429- 444.
6 Castelli L , Pesenti R , Ukovich W . DEA-like models for the efficiency evaluation of hierarchically structured units[J]. European Journal of Operational Research, 2004, 154 (2): 465- 476.
7 Kao C , Hwang S . Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan[J]. European Journal of Operational Research, 2008, 185 (1): 418- 429.
8 Kao C , Hwang S . Efficiency measurement for network systems: IT impact on firm performance[J]. Decision Support Systems, 2010, 48 (3): 437- 446.
9 F?re R , Grosskopf S . Productivity and intermediate products: A frontier approach[J]. Economics Letters, 1996, 50 (1): 65- 70.
10 Mahmoudabadi M Z , Azar A , Emrouznejad A . A novel multilevel network slacks-based measure with an application in electric utility companies[J]. Energy, 2018, 158, 1120- 1129.
11 楚雪芹, 李勇军, 崔峰, 等. 基于两阶段非期望DEA模型的商业银行效率评估[J]. 系统工程理论与实践, 2021, 41 (3): 636- 648.
12 曹莉, 马占新, 马生昀. 复杂多层次指标合成技术及效率分析[J]. 运筹学学报, 2020, 24 (4): 39- 50.
13 杨敏, 费锡玥, 魏字琪, 等. 基于资源共享与子系统交互的两阶段DEA评价方法——兼对我国"一流大学"科研绩效的评价[J].中国管理科学,
14 蓝以信, 温槟楌, 王应明. 基于公共权重的区间DEA效率评价及其排序方法研究[J]. 运筹学学报, 2021, 25 (4): 58- 68.
15 Cook W D , Liang L , Zhu J . Measuring performance of two-stage network structures by DEA: A review and future perspective[J]. Omega, 2010, 38 (6): 423- 430.
16 Chen H . Average lexicographic efficiency for data envelopment analysis[J]. Omega, 2018, 74, 82- 91.
17 Koronakos G , Sotiros D , Despotis D K . Reformulation of network data envelopment analysis models using a common modelling framework[J]. European Journal of Operational Research, 2019, 278 (2): 472- 480.
18 Despotis D K , Sotiros D , Koronakos G . A network DEA approach for series multi-stage processes[J]. Omega, 2016, 61, 35- 48.
19 Liu H , Song Y , Yang G . Cross-efficiency evaluation in data envelopment analysis based on prospect theory[J]. European Journal of Operational Research, 2019, 273 (1): 364- 375.
20 吴辉, 昂胜, 杨锋. 基于前景理论的两阶段DEA交叉效率评价模型[J]. 运筹与管理, 2021, 30 (11): 53- 59.
21 Kahneman D , Tversky A . Prospect theory: An analysis of decisions under risk[J]. Econometrica, 1979, 2 (47): 263- 291.
22 陈磊, 王应明. 基于前景理论的交叉效率集结方法[J]. 系统科学与数学, 2018, 38 (11): 1307- 1316.
23 Shao X , Wang M . Two-stage cross-efficiency evaluation based on prospect theory[J]. Journal of the Operational Research Society, 2022, 73 (7): 1620- 1632.
24 Shi H , Chen S , Chen L , et al. A neutral cross-efficiency evaluation method based on interval reference points in consideration of bounded rational behavior[J]. European Journal of Operational Research, 2021, 290 (3): 1098- 1110.
25 Charnes A , Cooper W W . Programming with linear fractional functionals[J]. Naval Research Logistics Quarterly, 1962, 9 (3): 181- 186.
26 Peng X , Yang Y . Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight[J]. Applied Soft Computing, 2017, 54, 415- 430.
27 Abdellaoui M , Bleichrodt H , Paraschiv C . Loss aversion under prospect theory: A parameterfree measurement[J]. Management Science, 2007, 53 (10): 1659- 1674.
28 Tversky A , Kahneman D . Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5 (4): 297- 323.
29 Li Y , Chen Y , Liang L , et al. DEA models for extended two-stage network structures[J]. Omega, 2012, 40 (5): 611- 618.
30 Kao C . Multiplicative aggregation of division efficiencies in network data envelopment analysis[J]. European Journal of Operational Research, 2018, 270 (1): 328- 336.
文章导航

/