1 |
Liang L , Cook W D , Zhu J . DEA models for two-stage processes: Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55 (7): 643- 653.
doi: 10.1002/nav.20308
|
2 |
Liang L , Yang F , Cook W D , et al. DEA models for supply chain efficiency evaluation[J]. Annals of Operations Research, 2006, 145 (1): 35- 49.
doi: 10.1007/s10479-006-0026-7
|
3 |
Yang J , Fang L . Average lexicographic efficiency decomposition in two-stage data envelopment analysis: An application to China's regional high-tech innovation systems[J]. Annals of Operations Research, 2022, 312, 1051- 1093.
doi: 10.1007/s10479-021-04427-z
|
4 |
Li H , Chen C , Cook W D , et al. Two-stage network DEA: Who is the leader?[J]. Omega, 2018, 74, 15- 19.
doi: 10.1016/j.omega.2016.12.009
|
5 |
Charnes A , Cooper W W , Rhodes E . Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2 (6): 429- 444.
doi: 10.1016/0377-2217(78)90138-8
|
6 |
Castelli L , Pesenti R , Ukovich W . DEA-like models for the efficiency evaluation of hierarchically structured units[J]. European Journal of Operational Research, 2004, 154 (2): 465- 476.
doi: 10.1016/S0377-2217(03)00182-6
|
7 |
Kao C , Hwang S . Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan[J]. European Journal of Operational Research, 2008, 185 (1): 418- 429.
doi: 10.1016/j.ejor.2006.11.041
|
8 |
Kao C , Hwang S . Efficiency measurement for network systems: IT impact on firm performance[J]. Decision Support Systems, 2010, 48 (3): 437- 446.
doi: 10.1016/j.dss.2009.06.002
|
9 |
Färe R , Grosskopf S . Productivity and intermediate products: A frontier approach[J]. Economics Letters, 1996, 50 (1): 65- 70.
doi: 10.1016/0165-1765(95)00729-6
|
10 |
Mahmoudabadi M Z , Azar A , Emrouznejad A . A novel multilevel network slacks-based measure with an application in electric utility companies[J]. Energy, 2018, 158, 1120- 1129.
doi: 10.1016/j.energy.2018.05.161
|
11 |
楚雪芹, 李勇军, 崔峰, 等. 基于两阶段非期望DEA模型的商业银行效率评估[J]. 系统工程理论与实践, 2021, 41 (3): 636- 648.
|
12 |
曹莉, 马占新, 马生昀. 复杂多层次指标合成技术及效率分析[J]. 运筹学学报, 2020, 24 (4): 39- 50.
doi: 10.15960/j.cnki.issn.1007-6093.2020.04.003
|
13 |
杨敏, 费锡玥, 魏字琪, 等. 基于资源共享与子系统交互的两阶段DEA评价方法——兼对我国"一流大学"科研绩效的评价[J].中国管理科学,
|
14 |
蓝以信, 温槟楌, 王应明. 基于公共权重的区间DEA效率评价及其排序方法研究[J]. 运筹学学报, 2021, 25 (4): 58- 68.
doi: 10.15960/j.cnki.issn.1007-6093.2021.04.005
|
15 |
Cook W D , Liang L , Zhu J . Measuring performance of two-stage network structures by DEA: A review and future perspective[J]. Omega, 2010, 38 (6): 423- 430.
doi: 10.1016/j.omega.2009.12.001
|
16 |
Chen H . Average lexicographic efficiency for data envelopment analysis[J]. Omega, 2018, 74, 82- 91.
doi: 10.1016/j.omega.2017.01.008
|
17 |
Koronakos G , Sotiros D , Despotis D K . Reformulation of network data envelopment analysis models using a common modelling framework[J]. European Journal of Operational Research, 2019, 278 (2): 472- 480.
doi: 10.1016/j.ejor.2018.04.004
|
18 |
Despotis D K , Sotiros D , Koronakos G . A network DEA approach for series multi-stage processes[J]. Omega, 2016, 61, 35- 48.
doi: 10.1016/j.omega.2015.07.005
|
19 |
Liu H , Song Y , Yang G . Cross-efficiency evaluation in data envelopment analysis based on prospect theory[J]. European Journal of Operational Research, 2019, 273 (1): 364- 375.
doi: 10.1016/j.ejor.2018.07.046
|
20 |
吴辉, 昂胜, 杨锋. 基于前景理论的两阶段DEA交叉效率评价模型[J]. 运筹与管理, 2021, 30 (11): 53- 59.
|
21 |
Kahneman D , Tversky A . Prospect theory: An analysis of decisions under risk[J]. Econometrica, 1979, 2 (47): 263- 291.
|
22 |
陈磊, 王应明. 基于前景理论的交叉效率集结方法[J]. 系统科学与数学, 2018, 38 (11): 1307- 1316.
doi: 10.12341/jssms13490
|
23 |
Shao X , Wang M . Two-stage cross-efficiency evaluation based on prospect theory[J]. Journal of the Operational Research Society, 2022, 73 (7): 1620- 1632.
doi: 10.1080/01605682.2021.1918587
|
24 |
Shi H , Chen S , Chen L , et al. A neutral cross-efficiency evaluation method based on interval reference points in consideration of bounded rational behavior[J]. European Journal of Operational Research, 2021, 290 (3): 1098- 1110.
doi: 10.1016/j.ejor.2020.08.055
|
25 |
Charnes A , Cooper W W . Programming with linear fractional functionals[J]. Naval Research Logistics Quarterly, 1962, 9 (3): 181- 186.
|
26 |
Peng X , Yang Y . Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight[J]. Applied Soft Computing, 2017, 54, 415- 430.
doi: 10.1016/j.asoc.2016.06.036
|
27 |
Abdellaoui M , Bleichrodt H , Paraschiv C . Loss aversion under prospect theory: A parameterfree measurement[J]. Management Science, 2007, 53 (10): 1659- 1674.
doi: 10.1287/mnsc.1070.0711
|
28 |
Tversky A , Kahneman D . Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5 (4): 297- 323.
doi: 10.1007/BF00122574
|
29 |
Li Y , Chen Y , Liang L , et al. DEA models for extended two-stage network structures[J]. Omega, 2012, 40 (5): 611- 618.
doi: 10.1016/j.omega.2011.11.007
|
30 |
Kao C . Multiplicative aggregation of division efficiencies in network data envelopment analysis[J]. European Journal of Operational Research, 2018, 270 (1): 328- 336.
doi: 10.1016/j.ejor.2017.09.047
|