俞建教授八十华诞贺寿专辑

合作博弈两类组合解的社会可接受性

展开
  • 1. 西北工业大学数学与统计学院, 陕西西安 710072
    2. 西北工业大学深圳研究院, 广东深圳 518063
孙浩, E-mail: hsun@nwpu.edu.cn

收稿日期: 2024-03-29

  网络出版日期: 2024-09-07

基金资助

国家自然科学基金(72001172);国家自然科学基金(72071158);广东省基础与应用基础研究基金(2024A1515012244)

版权

运筹学学报编辑部, 2024, 版权所有,未经授权。

Social acceptability for two combination solutions of cooperative games

Expand
  • 1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
    2. Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518063, Guangdong, China

Received date: 2024-03-29

  Online published: 2024-09-07

Copyright

, 2024, All rights reserved, without authorization

摘要

如何寻求公平合理的分配方案(即博弈的解)是合作博弈的重要研究内容, 依据博弈参与者边际贡献的分配原则和考虑参与者内在联系的社会性分配原则被广泛应用于博弈解的定义。不同的博弈组合解往往同时体现了这两类分配原则。针对现有组合解中组合参数的外生性以及缺乏合理性解释的问题, 本文利用博弈解的社会可接受性, 主要研究了基于Shapley值、Solidarity值、ENSC值以及均分值的两类组合解, 给出了组合解中参数范围选取的充分(必要)条件, 阐明了不同社会可接受性之间的关系, 揭示了组合系数对博弈参与者行为的影响。

本文引用格式

孙攀飞, 孙浩 . 合作博弈两类组合解的社会可接受性[J]. 运筹学学报, 2024 , 28(3) : 121 -131 . DOI: 10.15960/j.cnki.issn.1007-6093.2024.03.008

Abstract

How to determine fair and reasonable allocation schemes (i.e. solutions of the game) is an important research content of cooperative games. The marginal distribution principle based on the contribution of players and the social distribution principle considering the internal connections of players are widely used in the definition of solutions. Various combination solutions usually reflect both types of these two distribution principles. In response to the problem of exogeneity and lack of reasonable explanation of combination parameters in existing combination solutions, this paper utilizes the social acceptability of solutions to mainly analyze two types of combination solutions based on Shapley value, Solidarity value, ENSC value, and equal division value. Sufficient (necessary) conditions for selecting parameter range in combination solutions are given, and the relationship between different social acceptability is elucidated. Furthermore, we reveal the impact of combination coefficients on the behavior of players.

参考文献

1 Tijs S , Driessen T . Game theory and cost allocation problems[J]. Management Science, 1986, 32, 1015- 1028.
2 Shapley L . A value for n-person games[J]. Annals of Mathematics, 1953, 28, 307- 317.
3 Moulin H . The separability axiom and equal-sharing methods[J]. Journal of Economic Theory, 1985, 36, 120- 148.
4 Driessen T , Funaki Y . Coincidence of and collinearity between game theoretic solutions[J]. OR Spectrum, 1991, 13, 15- 30.
5 Nowak A , Radzik T . A solidarity value for n-person TU games[J]. International Journal of Game Theory, 1994, 23, 43- 48.
6 Nowak A , Radzik T . On convex combinations of two values[J]. Applicationes Mathematicae, 1996, 24, 47- 56.
7 Joosten R. Dynamics, equilibria and values [D]. Maastricht: Maastricht University, 1996.
8 van den Brink R , Chun Y , Funaki Y . Axiomatizations of a class of equal surplus sharing solutions for TU-games[J]. Procedia Computer Science, 2021, 190, 771- 788.
9 Sun P F , Hou D S , Sun H , et al. Process and optimization implementation of the alpha-ENSC value[J]. Mathematical Methods of Operations Research, 2017, 86, 293- 308.
10 Joosten R, Peters H, Thuijsman F. Socially acceptable values for transferable utility games [R]. Maastricht: Department of Mathematics, University of Maastricht, 1994.
11 Driessen T , Radzik T . Socially acceptable values for cooperative TU-games[J]. Institute of Mathematics, 2011, 4, 117- 131.
12 Mahajne M , Volij O . The socially acceptability scoring rule[J]. Social Choice and Welfare, 2018, 51, 223- 233.
13 Georgieva I , Beaunoyer E , Guitton M . Ensuring social acceptability of technological tracking in the COVID-19 context[J]. Computers in Human Behavior, 2021, 116, 106639.
14 Mills P , Groening C . The role of social acceptability and guilt in unethical consumer behavior: Following the crowd or their own moral compass[J]. Journal of Business Rsearch, 2021, 136, 377- 388.
15 Radzik T , Driessen T . On a family of values of TU-games generalizing the Shapley value[J]. Mathematical Social Sciences, 2013, 65, 105- 111.
16 Maschler M , Peleg B . A characterization, existence proof and dimension bounds for the kernel of a game[J]. Pacific Journal of Mathematics, 1966, 18, 289- 328.
17 Kalai E , Samet D . On weighted Shapley values[J]. International Journal of Game Theory, 1987, 16, 205- 222.
文章导航

/