运筹学学报 ›› 2013, Vol. 17 ›› Issue (4): 80-86.

• 运筹学 • 上一篇    下一篇

集值优化强有效解的广义二阶锥方向导数刻画

徐义红1,*, 孙鑫1, 汪涛1   

  1. 1. 南昌大学数学系, 南昌 330031;
  • 出版日期:2013-12-15 发布日期:2013-12-15
  • 通讯作者: 徐义红 E-mail:xuyihong@ncu.edu.cn
  • 基金资助:

    国家自然科学基金 (No. 61175127), 江西省自然科学基金 (No. 20122BAB201003), 江西省教育厅科技基金 (No. GJJ12010)

Characterizations on strongly efficient solutions of set-valued optimization with generalized second-order cone-directed derivatives

XU Yihong1,*, SUN Xin1, WANG Tao1   

  1. 1. Department of Mathematics, Nanchang University, Nanchang 330031, China
  • Online:2013-12-15 Published:2013-12-15

摘要: 在实赋范线性空间中考虑集值优化问题的强有效性. 借助Henig扩张锥和基泛函的性质,利用广义二阶锥方向相依导数,得到受约束于集值映射的优化问题,取得强有效元的二阶最优性必要条件. 当目标函数为近似锥-次类凸映射时, 利用强有效点的标量化定理,得到集值优化问题,取得强有效元的二阶充分条件.

关键词: 强有效性, 广义二阶锥方向相依导数, 集值优化

Abstract: The strong efficiency for set-valued optimization is considered in real normed spaces. With the help of the properties of Henig dilating cone and base functional, by applying generalized second-order cone-directed contingent derivates, a second-order optimality  necessary condition is established for a pair to be a strongly efficient element of set-valued optimization whose constraint condition is determined by  a set-valued mapping. When objective function  is nearly cone-subconvexlike, with the scalarization theorem for a strongly efficient point an optimality sufficient condition is also derived for a pair to be a strongly efficient element of set-valued optimization.

Key words: strong efficiency, generalized second-order cone-directed contingent deriv-ate, set-valued optimization

中图分类号: