[1] Corley H W. Optimality conditions for maximizations of set-valued functions [J]. Journal of Optimization Theory and Applications, 1988, 58: 1-10.
[2] Chen G Y, Jahn J. Optimality conditions for set-valued optimization problems [J]. Mathematical Methods of Operations Research, 1998, 48: 187-200.
[3] Gong X H, Dong H B, Wang S Y. Optimality conditions for proper efficient solutions of vector set-valued optimization [J]. Journal of Mathematical Analysis and Applications, 2003, 284: 332-350.
[4] 李明华, 李声杰, 陈纯荣. 参数弱向量平衡问题解集的似{\rm H\ddot{o}lder性和相依导数 [J]. 中国科学: 数学, 2013, 43 (1): 61-74.
[5] 杨新民, 杨进. 不可微多目标规划的高阶对称对偶性 [J]. 中国科学: 数学, 2013, 43 (7): 703-708.
[6] Jahn J, Khan A A, Zeilinger P. Second-order optimality conditions in set optimization [J]. Journal of Optimization Theory and Applications, 2005, 125 (2): 331-347.
[7] Li S J, Zhu S K, Teo K L. New generalized second-order contingent epiderivatives and set-valued optimization problems [J]. Journal of Optimization Theory and Applications, 2012, 152: 587-604.
[8] Zhu S K, Li S J, Teo K L. Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization [J]. Journal of Global Optimization, 2014, 58: 673-692.
[9] Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones [J]. Journal of Mathematical Analysis and Applications, 1979, 71: 232-241.
[10] Li Z F. Benson proper efficiency in the vector optimization of set-valued maps [J]. Journal of Optimization Theory and Applications, 1998, 98: 623-649.
[11] 盛宝怀, 刘三阳. Benson真有效意义下向量集值优化的广义Fritz John条件 [J]. 应用数学和力学, 2002, 23 (12): 1289-1295.
[12] 盛宝怀, 刘三阳. 用广义梯度刻画集值优化Benson真有效解 [J]. 应用数学学报, 2002, 25: 22-28.
[13] 刘三阳, 盛宝怀. 非凸向量集值优化Benson真有效解的最优性条件与对偶 [J]. 应用数学学报, 2003, 26 (2): 337-344.
[14] 盛宝怀, 刘三阳. Benson真有效意义下集值优化的广义最优性条件 [J]. 数学学报, 2003, 46 (3): 611-620.
[15] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions [J]. Journal of Optimization Theory and Applications, 2001, 110 (2): 413-427.
[16] Aubin J P, Frankowska H. Set-Valued Analysis [M]. New York: Wiley, 1990.
[17] Li S J, Zhu S K, Teo K L. New generalized second-order contingent epiderivatives and set-valued optimization problems [J]. Journal of Optimization Theory and Applications, 2012, 105: 586-604.
[18] Jiménez B, Novo V. Optimality conditions in differentiable vector optimization via second-order tangent sets [J]. Applied Mathematics and Optimization, 2004, 49: 123-144. |