运筹学学报 ›› 2014, Vol. 18 ›› Issue (3): 60-70.

• 运筹学 • 上一篇    下一篇

二次规划逆问题的牛顿方法

程聪1,*, 张立卫2   

  1. 1.东北大学物流优化与控制研究所, 沈阳 110819, 2.大连理工大学数学科学学院, 辽宁大连 116024
  • 出版日期:2014-09-15 发布日期:2014-09-15
  • 通讯作者: 程聪 E-mail:ccheng@tli.neu.edu.cn
  • 基金资助:

    国家自然科学基金 (No. 71032004)

Newton methods for inverse problems of quadratic programming

CHENG Cong1,*, ZHANG Liwei2   

  1. 1. The Logistics Institute, Northeastern University, Shenyang 110819, China, 2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Online:2014-09-15 Published:2014-09-15

摘要: 针对二次规划逆问题, 将其表达为带有互补约束的锥约束优化问题. 借助于对偶理论, 将问题转化为变量更少的线性互补约束非光滑优化问题. 通过扰动的方法求解转化后的问题并证明了收敛性. 采用非精确牛顿法求解扰动问题, 给出了算法的全局收敛性与局部二阶收敛速度. 最后通过数值实验验证了该算法的可行性.

关键词: 二次规划逆问题, 扰动方法, 收敛性, 非精确牛顿法

Abstract: This paper is devoted to the study of the inverse quadratic programming. The problem can be formulated as a cone constrained optimization problem with a complementary constrain. Based on the theory of duality, we reformulate this problem as a linear complementarity constrained nonsmooth optimization problem with fewer variables than the original one. We introduce a perturbation approach to solve the reformulated problem and demonstrate the global convergence. An inexact Newton method is constructed to solve the perturbation problem and its global convergence and local quadratic rate can be obtained. In the end, our numerical experiment results show the feasibility of this method.

Key words: inverse semi-definite quadratic programming problems, perturbation approach, the convergence, inexact Newton method

中图分类号: