| 1 |
ChenH C.Generalized reflexive matrices: Special properties and applications[J].SIAM Journal on Matrix Analysis and Applications,1998,19(1):140-153.
doi: 10.1137/S0895479895288759
|
| 2 |
Chen H C. The SAS domain decomposition method for structural analysis [R]. CSRD Teach, report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.
|
| 3 |
NicholasJ H,NatasaS.Anderson acceleration of the alternating projections method for computing the nearest correlation matrix[J].Numerical Algorithms,2016,72(4):1021-1042.
doi: 10.1007/s11075-015-0078-3
|
| 4 |
HajarianM.Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices[J].Numerical Algorithms,2016,73(3):591-609.
doi: 10.1007/s11075-016-0109-8
|
| 5 |
Liu Z B, Zhang C, Gao X Y. Constrained linear matrix equation and its application [C]//The 35th Chinese Control Conference, 2016.
|
| 6 |
ZhangH M,YinH C.Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations[J].Computers Mathematics with Applications,2017,73(12):2529-2547.
doi: 10.1016/j.camwa.2017.03.018
|
| 7 |
HuangB H,MaC F.Gradient-based iterative algorithms for generalized coupled Sylvesterconjugate matrix equations[J].Computers Mathematics with Applications,2018,75(7):2295-2310.
doi: 10.1016/j.camwa.2017.12.011
|
| 8 |
HuangB H,MaC F.An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled sylvester-conjugate matrix equations[J].Numerical Algorithms,2018,78(4):1271-1301.
doi: 10.1007/s11075-017-0423-9
|
| 9 |
HuangB H,MaC F.The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint[J].Journal of Global Optimization,2019,73(1):193-221.
doi: 10.1007/s10898-018-0692-4
|
| 10 |
QuH L,XieD X,XuJ.A numerical method on the mixed solution of matrix equation $\sum\limits_{i=1}^t A_i X_i B_i=E$ with sub-matrix constraints and its application[J].Applied Mathematics and Computation,2021,411(15):126460-126481.
|
| 11 |
YuanY X,ZhangH T,LiuL N.The Re-NND and Re-PD solutions to the matrix equations AX = C, XB = D[J].Linear and Multilinear Algebra,2021,70(13):3543-3552.
|
| 12 |
YanT X,MaC F.An iterative algorithm for generalized Hamiltonian solution of a class of generalized coupled Sylvester-conjugate matrix equations[J].Applied Mathematics and Computation,2021,411(15):126491-126514.
|
| 13 |
ZhangH J,LiuL N,LiuHao,et al.The solution of the matrix equation AXB = D and the system of matrix equations AX = C, XB = D with X * X = Ip[J].Applied Mathematics and Computation,2022,418,126789-126797.
doi: 10.1016/j.amc.2021.126789
|
| 14 |
袁仕芳,廖平安,雷渊.矩阵方程$AXB+CYD=E$的对称极小范数最小二乘解[J].计算数学,2007,29(2):203-216.
|
| 15 |
PengZ H,HuaX Y,ZhangL.The bisymmetric solutions of the matrix equation A1X1B1 + A2X2B2 +… + AlXlBl = C and its optimal approximation[J].Linear Algebra and Its Applications,2007,426(2-3):583-595.
doi: 10.1016/j.laa.2007.05.034
|
| 16 |
MehdiD,MasoudH.Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1 + A2X2B2 = C[J].Mathematical and Computer Modelling,2009,49(9-10):1937-1959.
doi: 10.1016/j.mcm.2008.12.014
|
| 17 |
LiJ F,HuX Y,ZhangL.The submatrix constraint problem of matrix equation AXB + CYD = E[J].Applied Mathematics and Computation,2009,215(7):2578-2590.
doi: 10.1016/j.amc.2009.08.051
|
| 18 |
孙合明,祁正萍,杨家稳.求矩阵方程$AXB+CYD=E$自反最佳逼近解的迭代算法[J].江西师范大学学报(自然科学版),2012,36(2):171-176.
|
| 19 |
刘莉,王伟.矩阵方程$AXB+CYD=E$的双对称最小二乘解及其最佳逼[J].宁夏师范学院学报,2014,35(6):17-23.
|
| 20 |
梁艳芳,袁仕芳.矩阵方程$AXB+CYD=E$的双中心最小二乘问题[J].五邑大学学报(自然科学版),2014,28(4):6-12.
|
| 21 |
杨家稳,孙合明.矩阵方程$AXB+CYD=E$最佳逼近自反解的迭代算法[J].计算机工程与应用,2015,51(5):65-70.
|
| 22 |
PengZ H,HuX Y,ZhangL.An efficient algorithm for the least-squares reflexive solution of the matrix equation A1XB1 = C1, A2XB2 = C2[J].Applied Mathematics and Computation,2006,181,988-999.
doi: 10.1016/j.amc.2006.01.071
|