[1] Chen H C. Generalized reflexive matrices: Special properties and applications [J]. SIAM Journal on Matrix Analysis and Applications, 1998, 19(1): 140-153. [2] Chen H C. The SAS domain decomposition method for structural analysis [R]. CSRD Teach, report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988. [3] Nicholas J H, Natasa S. Anderson acceleration of the alternating projections method for computing the nearest correlation matrix [J]. Numerical Algorithms, 2016, 72(4): 1021-1042. [4] Hajarian M. Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices [J]. Numerical Algorithms, 2016, 73(3): 591-609. [5] Liu Z B, Zhang C, Gao X Y. Constrained linear matrix equation and its application [C]//The 35th Chinese Control Conference, 2016. [6] Zhang H M, Yin H C. Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations [J]. Computers Mathematics with Applications, 2017, 73(12): 2529-2547. [7] Huang B H, Ma C F. Gradient-based iterative algorithms for generalized coupled Sylvesterconjugate matrix equations [J]. Computers Mathematics with Applications, 2018, 75(7): 2295- 2310. [8] Huang B H, Ma C F. An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled sylvester-conjugate matrix equations [J]. Numerical Algorithms, 2018, 78(4): 1271-1301. [9] Huang B H, Ma C F. The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint [J]. Journal of Global Optimization, 2019, 73(1): 193-221. [10] Qu H L, Xie D X, Xu J. A numerical method on the mixed solution of matrix equation $\sum\limits_{i=1}^{t}{{{A}_{i}}{{X}_{i}}{{B}_{i}}}=E~$ with sub-matrix constraints and its application [J]. Applied Mathematics and Computation, 2021, 411(15): 126460-126481. [11] Yuan Y X, Zhang H T, Liu L N. The Re-NND and Re-PD solutions to the matrix equations AX = C, XB = D [J]. Linear and Multilinear Algebra, 2021, 70(13): 3543-3552. [12] Yan T X, Ma C F. An iterative algorithm for generalized Hamiltonian solution of a class of generalized coupled Sylvester-conjugate matrix equations [J]. Applied Mathematics and Computation, 2021, 411(15): 126491-126514. [13] Zhang H J, Liu L N, Liu Hao, et al. The solution of the matrix equation AXB = D and the system of matrix equations AX = C, XB = D with X * X = Ip [J]. Applied Mathematics and Computation, 2022, 418: 126789-126797. [14] 袁仕芳, 廖平安, 雷渊. 矩阵方程$AXB+CYD=E$的对称极小范数最小二乘解[J]. 计算数学, 2007, 29(2): 203-216. [15] Peng Z H, Hua X Y, Zhang L. The bisymmetric solutions of the matrix equation A1X1B1 + A2X2B2 +… + AlXlBl = C and its optimal approximation [J]. Linear Algebra and Its Applications, 2007, 426(2-3): 583-595. [16] Mehdi D, Masoud H. Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1 + A2X2B2 = C [J]. Mathematical and Computer Modelling, 2009, 49(9-10): 1937-1959. [17] Li J F, Hu X Y, Zhang L. The submatrix constraint problem of matrix equation AXB + CY D = E [J]. Applied Mathematics and Computation, 2009, 215(7): 2578-2590. [18] 孙合明, 祁正萍, 杨家稳. 求矩阵方程$AXB+CYD=E$自反最佳逼近解的迭代算法[J]. 江西师范大学学报(自然科学版), 2012, 36(2): 171-176. [19] 刘莉, 王伟. 矩阵方程$AXB+CYD=E$的双对称最小二乘解及其最佳逼[J]. 宁夏师范学院学报, 2014, 35(6): 17-23. [20] 梁艳芳, 袁仕芳. 矩阵方程$AXB+CYD=E$的双中心最小二乘问题[J].五邑大学学报(自然科学版), 2014, 28(4): 6-12. [21] 杨家稳, 孙合明. 矩阵方程$AXB+CYD=E$最佳逼近自反解的迭代算法[J]. 计算机工程与应用, 2015, 51(5): 65-70. [22] Peng Z H, Hu X Y, Zhang L. An efficient algorithm for the least-squares reflexive solution of the matrix equation A1XB1 = C1, A2XB2 = C2 [J]. Applied Mathematics and Computation, 2006, 181: 988-999. |