运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (4): 44-56.doi: 10.15960/j.cnki.issn.1007-6093.2024.04.004
收稿日期:
2022-09-09
出版日期:
2024-12-15
发布日期:
2024-12-20
通讯作者:
胡林敏
E-mail:linminhu@ysu.edu.cn
基金资助:
Jing LI1, Linmin HU1,*(), Mingjia LI2
Received:
2022-09-09
Online:
2024-12-15
Published:
2024-12-20
Contact:
Linmin HU
E-mail:linminhu@ysu.edu.cn
摘要:
本文建立了具有贮备转换失效、Bernoulli休假和工作故障的
中图分类号:
李晶, 胡林敏, 李明佳. 基于重试机制与转换失效的k/(M+N): G系统可靠性建模与优化[J]. 运筹学学报(中英文), 2024, 28(4): 44-56.
Jing LI, Linmin HU, Mingjia LI. Reliability modeling and optimization of k=(M+N): G system based on retrial mechanism and switching failure[J]. Operations Research Transactions, 2024, 28(4): 44-56.
表1
系统可靠性指标和其他各项稳态性能指标的数值结果"
可靠性指标 | MUT | MDT | ||||
结果 | 0.993 0 | 0.004 0 | 0.991 2 | 0.004 7 | 212.518 8 | 1.890 6 |
其他各项稳态性能指标 | ||||||
结果 | 0.359 9 | 0.194 4 | 0.445 7 | 1.439 1 | 1.647 2 | 0.003 6 |
表2
参数$ \left( {\lambda , \alpha } \right) $对$ C\left( {\mu _b^ * , \mu _d^ * } \right) $和各项稳态性能指标的影响"
394.250 6 | 597.732 2 | 710.112 8 | 598.724 0 | 599.017 9 | |
1.878 9 | 2.438 2 | 1.936 8 | 2.345 8 | 2.242 9 | |
0.782 5 | 0.864 6 | 0.520 1 | 1.578 8 | 2.230 7 | |
0.278 5 | 0.128 0 | 0.071 9 | 0.127 1 | 0.126 3 | |
0.298 9 | 0.329 1 | 0.382 6 | 0.311 0 | 0.312 8 | |
0.422 6 | 0.542 9 | 0.545 5 | 0.561 9 | 0.560 9 | |
0.003 2 | 0.002 3 | 0.000 7 | 0.002 3 | 0.002 2 | |
1.772 7 | 3.770 1 | 5.016 0 | 3.777 3 | 3.784 1 | |
1.329 5 | 0.400 8 | 0.066 8 | 0.396 2 | 0.392 3 |
表3
参数$ \left( {\gamma , \delta } \right) $对$ C\left( {\mu _b^ * , \mu _d^ * } \right) $和各项稳态性能指标的影响"
394.250 6 | 387.141 1 | 383.428 2 | 489.931 0 | 426.880 7 | |
1.878 9 | 1.855 0 | 1.839 6 | 1.820 1 | 1.875 7 | |
0.782 5 | 0.780 9 | 0.784 5 | 0.693 6 | 0.754 3 | |
0.278 5 | 0.268 0 | 0.262 2 | 0.149 5 | 0.216 0 | |
0.298 9 | 0.305 5 | 0.309 4 | 0.260 1 | 0.284 1 | |
0.422 6 | 0.426 5 | 0.428 4 | 0.590 4 | 0.499 9 | |
0.003 2 | 0.003 2 | 0.003 3 | 0.002 1 | 0.002 8 | |
1.772 7 | 1.689 4 | 1.646 8 | 2.859 4 | 2.141 1 | |
1.329 5 | 1.388 6 | 1.419 0 | 0.827 1 | 1.155 2 |
表4
参数$ ( {\tilde \lambda , g}) $对$ C\left( {\mu _b^ * , \mu _d^ * } \right) $和各项稳态性能指标的影响"
394.250 6 | 398.684 0 | 402.905 9 | 426.929 5 | 460.245 9 | |
1.878 9 | 1.878 0 | 1.876 4 | 1.949 1 | 1.988 5 | |
0.782 5 | 0.789 7 | 0.778 2 | 0.782 1 | 0.755 6 | |
0.278 5 | 0.266 7 | 0.255 7 | 0.221 4 | 0.171 9 | |
0.298 9 | 0.303 8 | 0.308 7 | 0.275 0 | 0.255 9 | |
0.422 6 | 0.429 5 | 0.435 6 | 0.503 6 | 0.572 2 | |
0.003 2 | 0.003 1 | 0.003 0 | 0.002 8 | 0.002 3 | |
1.772 7 | 1.833 6 | 1.892 8 | 2.141 1 | 2.521 5 | |
1.329 5 | 1.279 9 | 1.231 8 | 1.115 6 | 0.905 3 |
表5
参数$ \left( {q, \beta } \right) $对$ C\left( {\mu _b^ * , \mu _d^ * } \right) $和各项稳态性能指标的影响"
396.976 7 | 398.891 1 | 400.800 0 | 398.615 1 | 398.083 4 | |
1.767 0 | 1.767 6 | 1.765 4 | 1.829 6 | 1.883 8 | |
1.637 9 | 1.629 6 | 1.638 9 | 1.211 2 | 0.764 0 | |
0.274 3 | 0.272 1 | 0.269 7 | 0.273 3 | 0.274 2 | |
0.302 2 | 0.303 2 | 0.304 2 | 0.301 5 | 0.300 5 | |
0.423 5 | 0.424 8 | 0.426 0 | 0.425 2 | 0.425 3 | |
0.006 2 | 0.009 3 | 0.012 3 | 0.009 3 | 0.009 4 | |
1.800 5 | 1.822 0 | 1.843 5 | 1.817 0 | 1.814 2 | |
1.308 3 | 1.293 7 | 1.279 0 | 1.298 5 | 1.301 5 |
1 | Lewis E E . Introduction to Reliability Engineering[M]. 2nd Edition New York: John Willey & Sons, 1996. |
2 |
Ke J B , Lee W C , Wang K H . Reliability and sensitivity analysis of a system with multiple unreliable service stations and standby switching failures[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 380, 455- 469.
doi: 10.1016/j.physa.2007.02.095 |
3 |
Yen T C , Wang K H . Cost benefit analysis of three systems with imperfect coverage and standby switching failures[J]. International Journal of Mathematics in Operational Research, 2018, 12 (2): 253- 272.
doi: 10.1504/IJMOR.2018.089680 |
4 | Ke J C , Liu T H , Yang D Y . Machine repairing systems with standby switching failure[J]. Computers & Industrial Engineering, 2016, 99, 223- 228. |
5 | Ke J C , Liu T H , Yang D Y . Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover[J]. Reliability Engineering & System Safety, 2018, 174, 12- 18. |
6 | Yang D Y , Wu C H . Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns[J]. Reliability Engineering & System Safety, 2021, 207, 107366. |
7 |
Keilson J , Servi L D . Oscillating random walk models for $GI/G/1$ vacation systems with Bernoulli schedules[J]. Journal of Applied Probability, 1986, 23 (3): 790- 802.
doi: 10.2307/3214016 |
8 | 周宗好, 朱翼隽, 冯艳刚. 具有Bernoulli休假的$M/G/1$重试可修的排队系统[J]. 运筹学学报, 2008, 12 (1): 71- 82. |
9 | 张宏波. 带有Bernoulli控制策略的$M/M/1 $多重休假排队模型[J]. 运筹学学报, 2013, 17 (3): 93- 100. |
10 |
Begum A , Choudhury G . Analysis of an unreliable single server batch arrival queue with two types of services under Bernoulli vacation policy[J]. Communications in Statistics-Theory and Methods, 2021, 50 (9): 2136- 2160.
doi: 10.1080/03610926.2019.1659972 |
11 | 刘思佳, 胡林敏, 刘朝彩. 具有两类失效模式和修理工休假的重试系统可靠性分析[J]. 应用数学, 2020, 33 (3): 643- 651. |
12 | Liu S J , Hu L M , Liu Z C , et al. Reliability of a retrial system with mixed standby components and Bernoulli vacation[J]. Quality Technology & Quantitative Management, 2021, 18 (2): 248- 265. |
13 |
Wu C H , Ke J C . Computational algorithm and parameter optimization for a multi-server system with unreliable servers and impatient customers[J]. Journal of Computational and Applied Mathematics, 2010, 235 (3): 547- 562.
doi: 10.1016/j.cam.2010.06.005 |
14 | Gao S , Wang J T . Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility[J]. Reliability Engineering & System Safety, 2021, 205, 107240. |
15 | Yen T C , Chen W L , Chen J Y . Reliability and sensitivity analysis of the controllable repair system with warm standbys and working breakdown[J]. Computers & Industrial Engineering, 2016, 97, 84- 92. |
16 |
Chen W L . System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy[J]. Systems Engineering, 2018, 21 (1): 59- 69.
doi: 10.1002/sys.21420 |
17 | Chen W L , Wang K H . Reliability analysis of a retrial machine repair problem with warm standbys and a single server with $N$-policy[J]. Reliability Engineering & System Safety, 2018, 180, 476- 486. |
18 | Yen T C , Wang K H , Wu C H . Reliability-based measure of a retrial machine repair problem with working breakdowns under the $F$-policy[J]. Computers & Industrial Engineering, 2020, 150, 106885. |
19 | Yang D Y , Tsao C L . Reliability and availability analysis of standby systems with working vacations and retrial of failed components[J]. Reliability Engineering & System Safety, 2019, 182, 46- 55. |
20 | Hu L M , Liu S J , Peng R , et al. Reliability and sensitivity analysis of a repairable $k$-out-of-$n: G$ system with two failure modes and retrial feature[J]. Communications in Statistics-Theory and Methods, 2020, 51 (9): 3043- 3064. |
21 | Chen W L , Wang K H . Reliability and sensitivity analysis of a retrial machine repair problem with warm standbys and imperfect coverage[J]. International Journal of Computer Mathematics: Computer Systems Theory, 2020, 5 (2): 72- 86. |
22 | Gao S . Availability and reliability analysis of a retrial system with warm standbys and second optional repair service[J]. Communications in Statistics-Theory and Methods, 2021, 52 (4): 1039- 1057. |
23 | Li M J , Hu L M , Peng R , et al. Reliability modeling for repairable circular consecutive-$k$-out-of-$n: F$ systems with retrial feature[J]. Reliability Engineering & System Safety, 2021, 216, 107957. |
24 | Wang K H , Wu C H , Yen T C . Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station[J]. Reliability Engineering & System Safety, 2022, 221, 108342. |
25 | 刘小华, 林杰. 基于遗传粒子群混合算法的供应链调度优化[J]. 控制与决策, 2011, 26 (4): 501- 506. |
26 | 许少华, 何新贵. 一种基于混沌遗传与粒子群混合优化的过程神经网络训练算法[J]. 控制与决策, 2013, 28 (9): 1393- 1398. |
27 | 孙凯, 刘祥. 基于蚁群-遗传混合算法的设备布局优化方法[J]. 系统工程理论与实践, 2019, 39 (10): 2581- 2589. |
[1] | 黄诗语, 陈亮, 寇彩霞. 分段线性的不可分流弧集多面体研究[J]. 运筹学学报(中英文), 2024, 28(4): 101-110. |
[2] | 胡晓敏, 张淑蓉, 曹婕, 杨卫华. 由完全图对换生成的凯莱图的子结构分析[J]. 运筹学学报(中英文), 2024, 28(4): 135-142. |
[3] | 程郁琨, 韩鑫, 陈修杨, 张昭. 基于网络环境的若干组合优化博弈问题研究[J]. 运筹学学报(中英文), 2024, 28(2): 1-29. |
[4] | 李鑫怡, 高英, 赵春杰. 定向距离函数的光滑化方法及其应用[J]. 运筹学学报(中英文), 2024, 28(2): 117-130. |
[5] | 孟辛晴, 张文星. 求解一类线性等式约束凸优化问题的加速方法[J]. 运筹学学报(中英文), 2024, 28(1): 1-17. |
[6] | 李颖涵, 童小娇, 杨柳. 基于矩不确定模糊集的分布鲁棒风险-回报优化模型研究[J]. 运筹学学报(中英文), 2024, 28(1): 77-88. |
[7] | 白富生, 兰秘. 带隐藏约束昂贵黑箱问题的自适应代理优化方法[J]. 运筹学学报(中英文), 2024, 28(1): 89-100. |
[8] | 张晴, 陈亮, 艾文宝, 寇彩霞. 天然气管网稳态运行优化模型的非线性界增强方法[J]. 运筹学学报(中英文), 2024, 28(1): 101-111. |
[9] | 姜波. 非负正交约束优化问题的理论、算法及应用[J]. 运筹学学报, 2023, 27(4): 136-152. |
[10] | 彭建文, 雷宏旺. 非凸两分块优化问题的一类惯性对称正则化交替方向乘子法[J]. 运筹学学报, 2023, 27(3): 37-52. |
[11] | 何胜学. 基于超级时空网络的公交车辆调度模型及3M进化算法[J]. 运筹学学报, 2023, 27(3): 68-82. |
[12] | 曾静, 丁若文. 一类带映射差的非凸向量优化问题解的稳定性[J]. 运筹学学报, 2023, 27(3): 121-128. |
[13] | 侯剑, 李萌萌, 文竹. 一类纳什均衡问题的求解算法[J]. 运筹学学报, 2023, 27(3): 129-136. |
[14] | 龙建成, 张心怡, 丁建勋. 通勤廊道停车共乘出行行为分析与停车收费优化[J]. 运筹学学报, 2023, 27(2): 110-124. |
[15] | 王海军, 王辉辉. 带消失约束的区间值优化问题的最优性条件与对偶定理[J]. 运筹学学报, 2023, 27(1): 87-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||