运筹学学报 ›› 2023, Vol. 27 ›› Issue (4): 136-152.doi: 10.15960/j.cnki.issn.1007-6093.2023.04.007
收稿日期:
2023-05-02
出版日期:
2023-12-15
发布日期:
2023-12-07
通讯作者:
姜波
E-mail:jiangbo@njnu.edu.cn
作者简介:
姜波, E-mail: jiangbo@njnu.edu.cn基金资助:
Received:
2023-05-02
Online:
2023-12-15
Published:
2023-12-07
Contact:
Bo JIANG
E-mail:jiangbo@njnu.edu.cn
摘要:
非负正交约束优化问题是同时带有非负约束和正交约束的优化问题, 该类问题在机器学习和数据科学中有着重要的应用。常见的非负正交约束优化问题包括二次指派问题、图匹配问题、非负正交矩阵分解问题、非负主成分分析和K-指示模型等。由于非负约束和正交约束的共同作用, 该类问题具有一定的组合结构, 一般是NP-难的。本文主要介绍非负正交约束优化问题的基本理论性质、求解算法以及相关的应用模型。
中图分类号:
姜波. 非负正交约束优化问题的理论、算法及应用[J]. 运筹学学报, 2023, 27(4): 136-152.
Bo JIANG. On the theories, algorithms, and applications of optimization with nonnegative orthogonality constraints[J]. Operations Research Transactions, 2023, 27(4): 136-152.
1 | Absil P-A , Mahony R , Sepulchre R . Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2008. |
2 |
Wen Z , Yin W . A feasible method for optimization with orthogonality constraints[J]. Mathematical Programming, 2013, 142 (1-2): 397- 434.
doi: 10.1007/s10107-012-0584-1 |
3 |
Huang W , Absil P-A , Gallivan K A . A Riemannian symmetric rank-one trust-region method[J]. Mathematical Programming, 2015, 150 (2): 179- 216.
doi: 10.1007/s10107-014-0765-1 |
4 |
Huang W , Gallivan K A , Absil P-A . A Broyden class of quasi-Newton methods for Riemannian optimization[J]. SIAM Journal on Optimization, 2015, 25 (3): 1660- 1685.
doi: 10.1137/140955483 |
5 |
Jiang B , Dai Y H . A framework of constraint preserving update schemes for optimization on Stiefel manifold[J]. Mathematical Programming, 2015, 153 (2): 535- 575.
doi: 10.1007/s10107-014-0816-7 |
6 |
Wei H , Yang W H . A Riemannian subspace limited-memory SR1 trust region method[J]. Optimization Letters, 2016, 10 (8): 1705- 1723.
doi: 10.1007/s11590-015-0977-1 |
7 |
高斌, 刘歆, 袁亚湘. 正交约束优化问题的一阶算法[J]. 运筹学学报, 2017, 21 (4): 57- 68.
doi: 10.15960/j.cnki.issn.1007-6093.2017.04.004 |
8 | Jiang B, Ma S, So A M-C, et al. Vector transport-free SVRG with general retraction for Riemannian optimization: Complexity analysis and practical implementation[J]. 2017, arXiv. 1705.09059. |
9 |
Gao B , Liu X , Chen X , et al. A new first-order algorithmic framework for optimization problems with orthogonality constraints[J]. SIAM Journal on Optimization, 2018, 28 (1): 302- 332.
doi: 10.1137/16M1098759 |
10 |
Hu J , Milzarek A , Wen Z , et al. Adaptive quadratically regularized Newton method for Riemannian optimization[J]. SIAM Journal on Matrix Analysis and Applications, 2018, 39 (3): 1181- 1207.
doi: 10.1137/17M1142478 |
11 |
Gao B , Liu X , Yuan Y . Parallelizable algorithms for optimization problems with orthogonality constraints[J]. SIAM Journal on Scientific Computing, 2019, 41 (3): A1949- A1983.
doi: 10.1137/18M1221679 |
12 |
Hu J , Jiang B , Lin L , et al. Structured quasi-Newton methods for optimization with orthogonality constraints[J]. SIAM Journal on Scientific Computing, 2019, 41 (4): A2239- A2269.
doi: 10.1137/18M121112X |
13 |
Liu H , So A M-C , Wu W . Quadratic optimization with orthogonality constraint: Explicit Łojasiewicz exponent and linear convergence of retraction-based line-search and stochastic variance-reduced gradient methods[J]. Mathematical Programming, 2019, 178, 215- 262.
doi: 10.1007/s10107-018-1285-1 |
14 |
Chen S , Ma S , So A M-C , et al. Proximal gradient method for nonsmooth optimization over the Stiefel manifold[J]. SIAM Journal on Optimization, 2020, 30 (1): 210- 239.
doi: 10.1137/18M122457X |
15 |
Hu J , Liu X , Wen Z , et al. A brief introduction to manifold optimization[J]. Journal of the Operations Research Society of China, 2020, 8, 199- 248.
doi: 10.1007/s40305-020-00295-9 |
16 |
Wang L , Gao B , Liu X . Multipliers correction methods for optimization problems over the Stiefel manifold[J]. CSIAM Transactions on Applied Mathematics, 2021, 2, 508- 531.
doi: 10.4208/csiam-am.SO-2020-0008 |
17 | Xiao N, Liu X. Solving optimization problems over the Stiefel manifold by smooth exact penalty function[J]. 2021, arXiv. 2110.08986. |
18 | Wang B , Ma S , Xue L . Riemannian stochastic proximal gradient methods for nonsmooth optimization over the Stiefel manifold[J]. The Journal of Machine Learning Research, 2022, 23 (1): 4599- 4631. |
19 |
Wang L , Liu X . Decentralized optimization over the Stiefel manifold by an approximate augmented Lagrangian function[J]. IEEE Transactions on Signal Processing, 2022, 70, 3029- 3041.
doi: 10.1109/TSP.2022.3182883 |
20 | Wang L , Zhang L H , Li R C . Trace ratio optimization with an application to multi-view learning[J]. Mathematical Programming, 2022, 1- 35. |
21 |
Xiao N , Liu X , Yuan Y . A class of smooth exact penalty function methods for optimization problems with orthogonality constraints[J]. Optimization Methods and Software, 2022, 37 (4): 1205- 1241.
doi: 10.1080/10556788.2020.1852236 |
22 |
Tang Y , Luo G , Yang Q . An efficient PGM-based algorithm with backtracking strategy for solving quadratic optimization problems with spherical constraint[J]. Journal of Computational and Applied Mathematics, 2023, 422, 114915.
doi: 10.1016/j.cam.2022.114915 |
23 |
Hiriart-Urruty J B , Seeger A . A variational approach to copositive matrices[J]. SIAM Review, 2010, 52 (4): 593- 629.
doi: 10.1137/090750391 |
24 |
Koopmans T C , Beckmann M . Assignment problems and the location of economic activities[J]. Econometrica: Journal of the Econometric Society, 1957, 25 (1): 53- 76.
doi: 10.2307/1907742 |
25 | Zass R, Shashua A. Nonnegative sparse PCA[C]//Advances in Neural Information Processing Systems, 2007: 1561-1568. |
26 |
Jiang B , Meng X , Wen Z , et al. An exact penalty approach for optimization with nonnegative orthogonality constraints[J]. Mathematical Programming, 2023, 198, 855- 897.
doi: 10.1007/s10107-022-01794-8 |
27 | Ding C, Li T, Peng W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]//Proceedings of the 12th ACM SIGKDD, 2006: 126-135. |
28 |
Yang Z , Oja E . Linear and nonlinear projective nonnegative matrix factorization[J]. IEEE Transactions on Neural Networks, 2010, 21 (5): 734- 749.
doi: 10.1109/TNN.2010.2041361 |
29 |
Tolić D , Antulov-Fantulin N , Kopriva I . A nonlinear orthogonal non-negative matrix factorization approach to subspace clustering[J]. Pattern Recognition, 2018, 82, 40- 55.
doi: 10.1016/j.patcog.2018.04.029 |
30 | Rahiche A, Cheriet M. Kernel orthogonal nonnegative matrix factorization: Application to multispectral document image decomposition[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 3275-3279. |
31 |
Rahiche A , Cheriet M . Nonlinear orthogonal NMF on the Stiefel manifold with graph-based total variation regularization[J]. IEEE Signal Processing Letters, 2022, 29, 1457- 1461.
doi: 10.1109/LSP.2022.3179168 |
32 |
Rahiche A , Cheriet M . Variational Bayesian orthogonal nonnegative matrix factorization over the Stiefel manifold[J]. IEEE Transactions on Image Processing, 2022, 31, 5543- 5558.
doi: 10.1109/TIP.2022.3194701 |
33 |
Pan J , Ng M K , Liu Y , et al. Orthogonal nonnegative tucker decomposition[J]. SIAM Journal on Scientific Computing, 2021, 43 (1): B55- B81.
doi: 10.1137/19M1294708 |
34 | Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering[C]//Proceedings of the 2012 SDM, 2012: 106-117. |
35 | Lin X , Guan J , Chen B , et al. Unsupervised feature selection via orthogonal basis clustering and local structure preserving[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (11): 6881- 6892. |
36 | Chen B , Guan J , Li Z . Unsupervised feature selection via graph regularized nonnegative CP decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (2): 2582- 2594. |
37 |
Miao J , Yang T , Sun L , et al. Graph regularized locally linear embedding for unsupervised feature selection[J]. Pattern Recognition, 2022, 122, 108299.
doi: 10.1016/j.patcog.2021.108299 |
38 | Zhang X , Xiu X , Zhang C . Structured joint sparse orthogonal nonnegative matrix factorization for fault detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 15. |
39 |
Chen W S , Zeng Q , Pan B . A survey of deep nonnegative matrix factorization[J]. Neurocomputing, 2022, 491, 305- 320.
doi: 10.1016/j.neucom.2021.08.152 |
40 | Chen F, Yang Y, Xu L, et al. Big-data clustering: K-means or K-indicators? [J]. 2019, arXiv. 1906.00938. |
41 | Boutsidis C, Drineas P, Mahoney M W. Unsupervised feature selection for the k-means clustering problem[C]//Advances in Neural Information Processing Systems, 2009: 153-161. |
42 | Wang P, Liu H, Zhou Z, So A M-C. Optimal non-convex exact recovery in stochastic block model via projected power method[C]//International Conference on Machine Learning, 2021: 10828-10838. |
43 | Yang W H , Zhang L H , Song R . Optimality conditions for the nonlinear programming problems on Riemannian manifolds[J]. Pacific Journal of Optimization, 2014, 10 (2): 415- 434. |
44 |
Bergmann R , Herzog R . Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds[J]. SIAM Journal on Optimization, 2019, 29 (4): 2423- 2444.
doi: 10.1137/18M1181602 |
45 | Liu C , Boumal N . Simple algorithms for optimization on Riemannian manifolds with constraints[J]. Applied Mathematics & Optimization, 2020, 82, 949- 981. |
46 |
Luo Z Q , Pang J S , Ralph D , et al. Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints[J]. Mathematical Programming, 1996, 75 (1): 19- 76.
doi: 10.1007/BF02592205 |
47 | Luo Z Q , Pang J S , Ralph D . Mathematical Programs with Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996. |
48 | Facchinei F , Pang J S . Finite-dimensional Variational Inequalities and Complementarity Problems[M]. Berlin: Springer, 2003. |
49 |
Chen X , Lu Z , Pong T K . Penalty methods for a class of non-Lipschitz optimization problem[J]. SIAM Journal on Optimization, 2016, 26 (3): 1465- 1492.
doi: 10.1137/15M1028054 |
50 |
Luo Z Q , Pang J S . Error bounds for analytic systems and their applications[J]. Mathematical Programming, 1994, 67 (1-3): 1- 28.
doi: 10.1007/BF01582210 |
51 |
Li G , Mordukhovich B S , Pham T . New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors[J]. Mathematical Programming, 2015, 153 (2): 333- 362.
doi: 10.1007/s10107-014-0806-9 |
52 |
Qian Y , Pan S , Xiao L . Error bound and exact penalty method for optimization problems with nonnegative orthogonal constraint[J]. IMA Journal of Numerical Analysis, 2023, drac084.
doi: 10.1093/imanum/drac084 |
53 | X. Chen, Y. He, and Z. Zhang. Tight error bounds for nonnegative orthogonality constraints and exact penalties[J]. 2022, arXiv: 2210.05164. |
54 |
Li B , Zhou G , Cichocki A . Two efficient algorithms for approximately orthogonal nonnegative matrix factorization[J]. IEEE Signal Processing Letters, 2015, 22 (7): 843-846.
doi: 10.1109/LSP.2014.2371895 |
55 | Wang S, Chang T H, Cui Y, et al. Clustering by orthogonal non-negative matrix factorization: a sequential non-convex penalty approach[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 5576-5580. |
56 |
Wang S , Chang T H , Cui Y , et al. Clustering by orthogonal NMF model and non-convex penalty optimization[J]. IEEE Transactions on Signal Processing, 2021, 69, 5273- 5288.
doi: 10.1109/TSP.2021.3102106 |
57 | Dehghanpour J , Mahdavi-Amiri N . Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm[J]. Annals of Operations Research, 2022, 1- 17. |
58 |
Zhang J , Liu H , Wen Z , et al. A sparse completely positive relaxation of the modularity maximization for community detection[J]. SIAM Journal on Scientific Computing, 2018, 40 (5): A3091- A3120.
doi: 10.1137/17M1141904 |
59 |
Pompili F , Gillis N , Absil P-A , et al. Two algorithms for orthogonal nonnegative matrix factorization with application to clustering[J]. Neurocomputing, 2014, 141, 15- 25.
doi: 10.1016/j.neucom.2014.02.018 |
60 | Zhou Y , Bao C , Ding C , et al. A semismooth Newton based augmented Lagrangian method for nonsmooth optimization on matrix manifolds[J]. Mathematical Programming, 2022, 201, 1- 61. |
61 | Yoo J, Choi S. Orthogonal nonnegative matrix factorization: multiplicative updates on Stiefel manifolds[C]//Intelligent Data Engineering and Automated Learning, 2008: 140-147. |
62 |
Pan J , Ng M K . Orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization[J]. SIAM Journal on Matrix Analysis and Applications, 2018, 39 (2): 856- 875.
doi: 10.1137/16M1107863 |
63 | Zhang K, Zhang S, Liu J, et al. Greedy orthogonal pivoting algorithm for non-negative matrix factorization[C]// International Conference on Machine Learning, 2019: 7493-7501. |
64 |
Chen Y Y , Xu F F . Randomized algorithms for orthogonal nonnegative matrix factorization[J]. Journal of the Operations Research Society of China, 2023, 11, 327- 345.
doi: 10.1007/s40305-020-00322-9 |
65 | Charikar M, Hu L. Approximation algorithms for orthogonal non-negative matrix factorization[C]//International Conference on Artificial Intelligence and Statistics, 2021: 2728-2736. |
66 | Huang W, Wei M, Gallivan K A, et al. A Riemannian optimization approach to clustering problems[J]. 2022, arXiv: 2208.03858. |
67 | Carson T, Mixon D G, Villar S. Manifold optimization for k-means clustering[C]//International Conference on Sampling Theory and Applications, IEEE, 2017: 73-77. |
68 |
Xu Y , Yin W . A globally convergent algorithm for nonconvex optimization based on block coordinate update[J]. Journal of Scientific Computing, 2017, 72 (2): 700- 734.
doi: 10.1007/s10915-017-0376-0 |
69 |
Barzilai J , Borwein J M . Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8 (1): 141- 148.
doi: 10.1093/imanum/8.1.141 |
70 | Attouch H , Bolte J , Svaiter B F . Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Mathematical Programming, 2013, 137 (1): 91- 129. |
71 | Xiao X , Li Y , Wen Z , et al. A regularized semi-smooth Newton method with projection steps for composite convex programs[J]. Journal of Scientific Computing, 2016, 76, 364- 389. |
72 |
Milzarek A , Xiao X , Cen S , et al. A stochastic semismooth Newton method for nonsmooth nonconvex optimization[J]. SIAM Journal on Optimization, 2019, 29 (4): 2916- 2948.
doi: 10.1137/18M1181249 |
73 |
Li X , Sun D , Toh K C . On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope[J]. Mathematical Programming, 2020, 179, 419- 446.
doi: 10.1007/s10107-018-1342-9 |
74 | Xia Y . An efficient continuation method for quadratic assignment problems[J]. Computers & Operations Research, 2010, 37 (6): 1027- 1032. |
75 |
Liu Z Y , Qiao H , Xu L . An extended path following algorithm for graph-matching problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1451- 1456.
doi: 10.1109/TPAMI.2012.45 |
76 |
Zaslavskiy M , Bach F , Vert J P . A path following algorithm for the graph matching problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2227- 2242.
doi: 10.1109/TPAMI.2008.245 |
77 | Lyzinski V , Fishkind D E , Fiori M , et al. Graph matching: Relax at your own risk[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 60- 73. |
78 |
Jiang B , Liu Y F , Wen Z . lp-norm regularization algorithms for optimization over permutation matrices[J]. SIAM Journal on Optimization, 2016, 26 (4): 2284- 2313.
doi: 10.1137/15M1048021 |
79 |
Chen X , Xu F , Ye Y . Lower bound theory of nonzero entries in solutions of ℓ2-ℓp minimization[J]. SIAM Journal on Scientific Computing, 2010, 32 (5): 2832- 2852.
doi: 10.1137/090761471 |
80 |
Lu Z . Iterative reweighted minimization methods for lp regularized unconstrained nonlinear programming[J]. Mathematical Programming, 2014, 147 (1-2): 277- 307.
doi: 10.1007/s10107-013-0722-4 |
81 |
Li X , Pong T K , Sun H , et al. A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem[J]. Computational Optimization and Applications, 2021, 78 (3): 853- 891.
doi: 10.1007/s10589-020-00261-4 |
82 |
Zhang J , Jin Z , Jiang B , et al. Stochastic augmented projected gradient methods for the large-scale precoding matrix indicator selection problem[J]. IEEE Transactions on Wireless Communications, 2022, 21 (11): 9553- 9565.
doi: 10.1109/TWC.2022.3177840 |
[1] | 连淑君, 杜爱华, 唐加会. 等式约束优化问题的一类新的简单光滑精确罚函数[J]. 运筹学学报, 2017, 21(1): 33-43. |
[2] | 王长钰, 赵文玲. 约束优化问题的一类光滑罚算法的全局收敛特性[J]. 运筹学学报, 2015, 19(3): 151-160. |
[3] | 连淑君. 不等式约束优化问题的低阶精确罚函数的光滑化算法[J]. 运筹学学报, 2012, 16(2): 51-64. |
[4] | 尚有林, 刘牧华, 李璞. 一种新的逼近精确罚函数的罚函数及性质[J]. 运筹学学报, 2012, 16(1): 56-66. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 426
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||