运筹学学报 ›› 2014, Vol. 18 ›› Issue (2): 59-68.
段辉明1,*, 曾波2, 窦智1
DUAN Huiming1,*, ZENG Bo2, DOU Zhi1
摘要: Erd\"{o}s P, Harary F和Klawe M研究了K_{n}-残差图, 并对连通的m-K_{n}-残差图提出了一些结论和猜想. 利用容斥原理以及集合的运算性质等方法, 研究了连通的3-K_{n}-残差图, 得到当顶点最小度为n时, 3-K_{n}-残差图最小阶的计算公式以及相应的唯一极图. 当n=2时, 得到最小阶为11以及相应的极图; 当n=3时, 得到最小阶为20并找到两个不同构的极图, 不满足Erd\"{o}s等提出的结论; 当$=4时, 得到最小阶为22及相应的极图; 当n=8, 可以找到两个不同构的3-K_{8_{}}-残差图, 不满足Erd\"{o}s等提出的结论; 最后证明了当n=9,10时, 最小阶分别为48和52以及相应的唯一极图, 验证了 Erd\"{o}s等在文献~(Residually-complete graphs [J]. Annals of Discrete Mathematics, 1980, 6: 117-123) 中提出的结论.
中图分类号: