运筹学学报(中英文) ›› 2024, Vol. 28 ›› Issue (1): 18-28.doi: 10.15960/j.cnki.issn.1007-6093.2024.01.002

•   • 上一篇    下一篇

单边相对光滑非凸-凹极小极大问题的镜像梯度算法

徐洋1, 王军霖1, 徐姿1,*()   

  1. 1. 上海大学理学院数学系, 上海 200444
  • 收稿日期:2021-09-24 出版日期:2024-03-15 发布日期:2024-03-15
  • 通讯作者: 徐姿 E-mail:xuzi@shu.edu.cn
  • 基金资助:
    国家自然科学基金(12071279);上海市自然科学基金(20ZR1420600)

A mirror descent gradient ascent algorithm for one side relatively smooth nonconvex-concave minimax optimization problems

Yang XU1, Junlin WANG1, Zi XU1,*()   

  1. 1. Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2021-09-24 Online:2024-03-15 Published:2024-03-15
  • Contact: Zi XU E-mail:xuzi@shu.edu.cn

摘要:

本文提出了一种镜像梯度下降梯度上升算法来求解单边相对光滑的非凸-凹极小极大问题。在算法的每次迭代中, 我们采用镜像梯度下降步来更新相对光滑的变量, 采用梯度上升投影步来更新目标函数中光滑的变量。本文在理论上证明了算法收敛到$\varepsilon$-近似一阶稳定点的迭代复杂度是$\mathcal{O}\left( \varepsilon^{-4} \right)$

关键词: 非凸-凹极小极大问题, 相对光滑, 镜像梯度法

Abstract:

In this paper, we propose a mirror descent gradient ascent algorithm to solve one side relatively smooth nonconvex-concave minimax optimization problems. At each iteration of the proposed algorithm, a mirror descent step is performed to update the relatively smooth variable, while a gradient ascent projection step is used to update the smooth variable alternately. We also prove that the iteration complexity of the proposed algorithm is $\mathcal{O}\left( \varepsilon ^{-4} \right)$ to achieve an $\varepsilon$-approximate first-order stationary point.

Key words: nonconvex-concave minimax optimization problem, relatively smooth, mirror gradient method

中图分类号: