运筹学学报 ›› 2022, Vol. 26 ›› Issue (1): 1-22.doi: 10.15960/j.cnki.issn.1007-6093.2022.01.001

•   • 上一篇    下一篇

小批量随机块坐标下降算法

胡佳1, 郭田德1,2, 韩丛英1,2*,*()   

  1. 1. 中国科学院大学数学科学学院, 北京 100049
    2. 中国科学院大数据挖掘与知识管理重点实验室, 北京 100190
  • 收稿日期:2021-06-14 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 韩丛英 E-mail:hancy@ucas.ac.cn
  • 作者简介:韩丛英  E-mail: hancy@ucas.ac.cn
  • 基金资助:
    国家自然科学基金(11731013);国家自然科学基金(U19B2040);国家自然科学基金(11991022);中国科学院先导专项基金(XDA27000000)

Mini-batch stochastic block coordinate descent algorithm

Jia HU1, Tiande GUO1,2, Congying HAN1,2*,*()   

  1. 1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    2. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-06-14 Online:2022-03-15 Published:2022-03-14
  • Contact: Congying HAN E-mail:hancy@ucas.ac.cn

摘要:

针对机器学习中广泛存在的一类问题:结构化随机优化问题(其中“结构化”是指问题的可行域具有块状结构,且目标函数的非光滑正则化部分在变量块之间是可分离的),我们研究了小批量随机块坐标下降算法(mSBD)。按照求解非复合问题和复合问题分别给出了基本的mSBD和它的变体,对于非复合问题,分析了算法在没有一致有界梯度方差假设情况下的收敛性质。而对于复合问题,在不需要通常的Lipschitz梯度连续性假设条件下得到了算法的收敛性。最后通过数值实验验证了mSBD的有效性。

关键词: 块坐标下降, 随机近似, 随机(复合)优化, Hölder连续, 非光滑, 非凸优化

Abstract:

We study the mini-batch stochastic block coordinate descent algorithm (mSBD) for a class of problems, i.e., structured stochastic optimization problems (where "structured" means that feasible region of the problem has a block structure and the nonsmooth regularized part of the objective function is separable across the variable blocks), widely used in machine learning. We give the basic mSBD and its variant according to solving non-composite and composite problems respectively. For the noncomposite problem, we analyze the convergence properties of the algorithm without the assumption of uniformly bounded gradient variance. For the composite problem, we obtain the convergence of the algorithm without the usual Lipschitz gradient continuity assumption. Finally, we verify the effectiveness of mSBD by numerical experiments.

Key words: block coordinate descent, stochastic approximation, stochastic (composite) optimization, Hölder continuity, nonsmooth, nonconvex optimization

中图分类号: